一 前期工作

环境:python3.6,1080ti,pytorch1.10(实验室服务器的环境??)

1.设置GPU或者cpu

import torchimport torch.nn as nnimport matplotlib.pyplot as pltimport torchvision device = torch.device("cuda" if torch.cuda.is_available() else "cpu") device

2.导入数据

import os,PIL,random,pathlib data_dir = 'weather_photos/'data_dir = pathlib.Path(data_dir)print(data_dir) data_paths = list(data_dir.glob('*'))print(data_paths)classeNames = [str(path).split("/")[1] for path in data_paths]classeNames

二 数据预处理

数据格式设置

total_datadir = 'weather_photos/' # 关于transforms.Compose的更多介绍可以参考:https://blog.csdn.net/qq_38251616/article/details/124878863train_transforms = transforms.Compose([    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸    transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间    transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛        mean=[0.485, 0.456, 0.406],         std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。]) total_data = datasets.ImageFolder(total_datadir,transform=train_transforms)total_data

数据集划分

train_size = int(0.8 * len(total_data))test_size  = len(total_data) - train_sizetrain_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])train_dataset, test_dataset

设置dataset

batch_size = 32 train_dl = torch.utils.data.DataLoader(train_dataset,                                           batch_size=batch_size,                                           shuffle=True,                                           num_workers=1)test_dl = torch.utils.data.DataLoader(test_dataset,                                          batch_size=batch_size,                                          shuffle=True,                                          num_workers=1)

检查数据格式

for X, y in test_dl:    print("Shape of X [N, C, H, W]: ", X.shape)    print("Shape of y: ", y.shape, y.dtype)    break

三 搭建网络

 import torchfrom torch import nnfrom torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential,ReLU num_classes = 4 class Model(nn.Module):    def __init__(self):        super(Model,self).__init__()        # 卷积层        self.layers = Sequential(            # 第一层            nn.Conv2d(3, 24, kernel_size=5),            nn.BatchNorm2d(24),            nn.ReLU(),            # 第二层            nn.Conv2d(24,64 , kernel_size=5),            nn.BatchNorm2d(64),            nn.ReLU(),            nn.MaxPool2d(2,2),            nn.Conv2d(64, 128, kernel_size=5),            nn.BatchNorm2d(128),            nn.ReLU(),            nn.Conv2d(128, 24, kernel_size=5),            nn.BatchNorm2d(24),            nn.ReLU(),            nn.MaxPool2d(2,2),            nn.Flatten(),            nn.Linear(24*50*50, 516,bias=True),            nn.ReLU(),            nn.Dropout(0.5),            nn.Linear(516, 215,bias=True),            nn.ReLU(),            nn.Dropout(0.5),            nn.Linear(215, num_classes,bias=True),        )     def forward(self, x):         x = self.layers(x)        return x      device = "cuda" if torch.cuda.is_available() else "cpu"print("Using {} device".format(device)) model = Model().to(device)model

打印网络结构

四 训练模型1.设置学习率

loss_fn    = nn.CrossEntropyLoss() # 创建损失函数learn_rate = 1e-3 # 学习率opt        = torch.optim.SGD(model.parameters(),lr=learn_rate)

2.模型训练

训练函数

# 训练循环def train(dataloader, model, loss_fn, optimizer):    size = len(dataloader.dataset)  # 训练集的大小,一共60000张图片    num_batches = len(dataloader)   # 批次数目,1875(60000/32)     train_loss, train_acc = 0, 0  # 初始化训练损失和正确率        for X, y in dataloader:  # 获取图片及其标签        X, y = X.to(device), y.to(device)                # 计算预测误差        pred = model(X)          # 网络输出        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失                # 反向传播        optimizer.zero_grad()  # grad属性归零        loss.backward()        # 反向传播        optimizer.step()       # 每一步自动更新                # 记录acc与loss        train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()        train_loss += loss.item()                train_acc  /= size    train_loss /= num_batches     return train_acc, train_loss

测试函数

def test (dataloader, model, loss_fn):    size        = len(dataloader.dataset)  # 测试集的大小,一共10000张图片    num_batches = len(dataloader)          # 批次数目,313(10000/32=312.5,向上取整)    test_loss, test_acc = 0, 0        # 当不进行训练时,停止梯度更新,节省计算内存消耗    with torch.no_grad():        for imgs, target in dataloader:            imgs, target = imgs.to(device), target.to(device)                        # 计算loss            target_pred = model(imgs)            loss        = loss_fn(target_pred, target)                        test_loss += loss.item()            test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()     test_acc  /= size    test_loss /= num_batches     return test_acc, test_loss

具体训练代码

epochs     = 30train_loss = []train_acc  = []test_loss  = []test_acc   = [] for epoch in range(epochs):    model.train()    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)        model.eval()    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)        train_acc.append(epoch_train_acc)    train_loss.append(epoch_train_loss)    test_acc.append(epoch_test_acc)    test_loss.append(epoch_test_loss)        template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))print('Done')

五 模型评估1.Loss和Accuracy图

import matplotlib.pyplot as plt#隐藏警告import warningswarnings.filterwarnings("ignore")               #忽略警告信息plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号plt.rcParams['figure.dpi']         = 100        #分辨率 epochs_range = range(epochs) plt.figure(figsize=(12, 3))plt.subplot(1, 2, 1) plt.plot(epochs_range, train_acc, label='Training Accuracy')plt.plot(epochs_range, test_acc, label='Test Accuracy')plt.legend(loc='lower right')plt.title('Training and Validation Accuracy') plt.subplot(1, 2, 2)plt.plot(epochs_range, train_loss, label='Training Loss')plt.plot(epochs_range, test_loss, label='Test Loss')plt.legend(loc='upper right')plt.title('Training and Validation Loss')plt.show()

2.对结果进行预测

import osimport json import torchfrom PIL import Imagefrom torchvision import transformsimport matplotlib.pyplot as plt img_path = "weather_photos/cloudy/cloudy1.jpg"classes = ['cloudy', 'rain', 'shine', 'sunrise']data_transform = transforms.Compose([    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸    transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间    transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛        mean=[0.485, 0.456, 0.406],         std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。])def main():    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")        img = Image.open(img_path)    plt.imshow(img)    # [N, C, H, W]    img = data_transform(img)    # expand batch dimension    img = torch.unsqueeze(img, dim=0)    model.eval()    with torch.no_grad():        # predict class        output = torch.squeeze(model(img.to(device))).cpu()        predict = torch.softmax(output, dim=0)        predict_cla = torch.argmax(predict).numpy()        print(classes[predict_cla])    plt.show()    if __name__ == '__main__':    main()

预测结果如下:

3.总结

1.本次能主要对以下函数进行了学习

transforms.Compose

针对数据转换,例如尺寸,类型
datasets.ImageFolder

结合上面这个对某文件夹下数据处理
torch.utils.data.DataLoader

设置dataset