前言

相信接触过并发系统的小伙伴们基本都使用过线程池,或多或少调整过对应的参数。以 Java 中的经典模型来说,能够配置核心线程数、最大线程数、队列容量等等参数。

public ThreadPoolExecutor(int corePoolSize,                              int maximumPoolSize,                              long keepAliveTime,                              TimeUnit unit,                              BlockingQueue workQueue) {  this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,       Executors.defaultThreadFactory(), defaultHandler);}

一般情况下,我们设置参数步骤是:

  1. 确定业务属性,比如IO密集型、CPU密集型、混合型等。

  2. 参考理想化的线程计算模型算出理论值。如《Java并发编程实战》一书中的理想化模型:

  1. 辅之以压测等手段对参数进行逐步调优。

  2. 再高级点,我们也可以对线程池进行监控,并实时对参数进行调整,也即参数动态化方案。可参考:Java线程池实现原理及其在美团业务中的实践

工具推荐

本文则推荐一款工具,它不关心任务内部是如何实现的,而是通过计算运行时的各种系统指标(包括 CPU计算时间、IO等待时间、内存占用等)来直接计算线程池参数的。我们可以直接在这些参数的基础上,再配合压测进行调优,避免盲目调参。

这个工具叫做 dark_magic,直译就是黑魔法,源码参见 https://github.com/sunshanpeng/dark_magic。里面的备注已经很详细,本文不再赘述。只提一下系统指标的计算方式。

指标的计算方式

CPU计算时间 和 IO等待时间 的计算:

  • 先执行两遍任务,进行预热。

  • 获取当前线程的 CPU计算时间,记为 C1

  • 再执行一遍任务

  • 获取当前线程的 CPU计算时间,记为 C2

  • 计算当前任务执行需要的 CPU计算时间:C2 – C1

  • 计算当前任务执行中的 IO等待 时间:总耗时 – CPU计算时间

其中,计算当前线程的 CPU计算时间使用 rt.jar 包中的方法:

ManagementFactory.getThreadMXBean().getCurrentThreadCpuTime()

内存占用的计算:

  • 生成1000个(可配置)任务加入到阻塞队列中

  • 循环调用 15次(可配置) System.gc() 函数,触发gc

  • 记录目前的内存使用情况,记为 M0

  • 再次生成1000个(可配置)任务加入到阻塞队列中

  • 循环调用 15次(可配置) System.gc() 函数,触发gc

  • 记录目前的内存使用情况,记为 M1

  • 计算当前任务执行需要的内存:M1 – M0

其中,计算内存使用 rt.jar 包中方法:

Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory()

使用方法

该工具的使用方法也很简单:

  1. 把你的业务代码封装为一个函数,放到 createTask 函数中。

  2. 设定 CPU使用率的期望值、队列占用内存的期望值。

  3. 执行,等待结果输出。

下面分别展示一个CPU密集型和IO密集型的输出(我们设置的 CPU 使用率期望值为 60%,队列占用内存的期望值为 10MB ):

# CPU密集型Target queue memory usage (bytes): 10240createTask() produced threadpool.AsyncCPUTask which took 40 bytes in a queueFormula: 10240 / 40* Recommended queue capacity (bytes): 256Number of CPU: 8Target utilization: 0.59999999999999997779553950749686919152736663818359375Elapsed time (nanos): 3000000000Compute time (nanos): 2949786000Wait time (nanos): 50214000Formula: 8 * 0.59999999999999997779553950749686919152736663818359375 * (1 + 50214000 / 2949786000)* Optimal thread count: 4.79999999999999982236431605997495353221893310546875000
# IO密集型Target queue memory usage (bytes): 10240createTask() produced threadpool.AsyncIOTask which took 40 bytes in a queueFormula: 10240 / 40* Recommended queue capacity (bytes): 256Number of CPU: 8Target utilization: 0.59999999999999997779553950749686919152736663818359375Elapsed time (nanos): 3000000000Compute time (nanos): 55528000Wait time (nanos): 2944472000Formula: 8 * 0.59999999999999997779553950749686919152736663818359375 * (1 + 2944472000 / 55528000)* Optimal thread count: 259.19999999999999040767306723864749073982238769531250000

针对线程数的计算而言:

  • 对于 CPU 密集型任务,IO等待时间(Wait time) 远远小于 CPU计算时间(Compute time)。计算出来的推荐核心线程数为 4.8。

  • 对于 IO 密集型任务,IO等待时间(Wait time) 远远大于 CPU计算时间(Compute time)。计算出来的推荐核心线程数为 259。

而队列大小与任务中使用的对象大小有关,这里的内存使用是通过计算 gc 执行前后的内存大小差异得到的(本文中的例子均为 40 B)。由于该算法内部使用 System.gc() 触发 gc。但由于 gc 不一定真的会立刻执行,所以拿到的队列结果可能不一定准确,只能作为粗略参考。

总结

总的来说,dark_magic 这款工具以任务执行时的系统指标数据为基础,计算出比较合理的线程池参数,给我们进行后续的压测调参提供了相对比较合理的参考,值得推荐。

『注:本文来自博客园“小溪的博客”,若非声明均为原创内容,请勿用于商业用途,转载请注明出处http://www.cnblogs.com/xiaoxi666/』