这篇文章我将介绍工作中处理热key问题的常用手段,可能介绍的不是很全,毕竟不同的业务场景可能有不同的解决方案,但是相信通过这部分的介绍能提供一个热key问题的思路。
热key问题,简单来说就是对某一资源的访问量过高问题,再简单一点来说就是对某个资源访问的qps过高,而解决访问量高的问题通常我们使用分布式缓存,最常见的就是redis,这个资源对应redis的一个key简称热key。热key在开发中是非常常见的,比如各种app的榜单,活动页面上的一些资源。
虽然redis号称单节点能扛住10Wqps,但是开发中肯定不能这样去估计,毕竟安全第一,比如5000似乎就可能就可以作为上限。如果超过5000该怎么处理呢?下面将提供几种常见的解决方案。
冗余写/随机读
假设在做活动,活动总金额为amount,用户每次完成任务会得到一笔奖金,每天结算一次,在页面会展示剩余金额restAmount。我们将剩余金额存到redis中,{key: pool, value: restAmount}
由于每天统一结算,所以写的qps不会很高,毕竟我们能自己控制流量,比如用户完成后发个延迟结算消息到mq,然后由消费者来处理计算剩余金额最后更新到redis中。
但是在页面的读的qps是很高的。显然奖池pool就是个热key。
既然单节点扛不住,那么显然可以