常用的包
import torchimport torchvisionfrom torch import nnfrom torch.utils.data import DataLoaderfrom torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequentialfrom torch.utils.tensorboard import SummaryWriter
Pytorchpytorch安装准备环境
- 安装Ancona工具
- 安装python语言
- 安装pycharm工具
以上工作安装完成后,开始真正的pytorch安装之旅,别担心,很容易
1.打开Ancona Prompt创建一个pytorch新环境
conda create -n pytorch python=版本号比如3.11
后面步骤都是y同意安装
2.激活环境
同样在Ancona Prompt中继续输入如下指令
conda activate pytorch
3.去pytorch官网找到下载pytorch指令,根据个人配置进行选择
- window下一般选择Conda
- Linux下一般选择Pip
这里要区分自己电脑是否含有独立显卡,没有的选择cpu模式就行。
如果有独立显卡,那么去NVIDIA官网查看自己适合什么版本型号进行选择即可。
如果有独立显卡,在Ancona Prompt中输入如下指令,返回True即可确认安装成功。
torch.cuda.is_available()
如果没有cpu我们通过pycharm来进行判断,首先创建一个pytorch工程,如下所示:
import torchprint(torch.cuda.is_available())print(torch.backends.cudnn.is_available())print(torch.cuda_version)print(torch.backends.cudnn.version())print(torch.__version__)
是不是发现输出false, false, None, None,是不是以为错了。不,那是因为我们安装的是CPU版本的,压根就没得cuda,cudnn这个东西。我们只要检测python版本的torch(PyTorch)在就行。
ok!恭喜你成功完成安装pytroch!接下来开启你的学习之路吧!
引言:python中的两大法宝函数
- 这里1、2、3、4是分隔区
# 查看torch里面有什么for i in range(len(dir(torch))): print(f"{dir(torch)[i]}")
pytorch加载数据初认识
import import torchfrom torch.utils.data import Dataset
- 看看Dataset里面有什么:
Dataset代码实战
from torch.utils.data import Datasetfrom PIL import Imageimport osclass MyData(Dataset): def __init__(self, root_dir, label_dir): self.root_dir = root_dir self.label_dir = label_dir self.path = os.path.join(self.root_dir, self.label_dir) # 根路径和最后的路径进行拼接 self.img_path = os.listdir(self.path) # 路径地址img_path[0] 就是第一张地址 def __getitem__(self, idx): """ 读取每个照片 :param idx: :return: """ img_name = self.img_path[idx] img_item_path = os.path.join(self.root_dir, self.label_dir, img_name) img = Image.open(img_item_path) label = self.label_dir return img, label def __len__(self): """ 查看图片个数,即数据集个数 :return: """ return len(self.img_path)# img_path = "E:\\Project\\Code_Python\\Learn_pytorch\\learn_pytorch\\dataset\\training_set\\cats\\cat.1.jpg"# img = Image.open(img_path)# print(img)# img.show()root_dir = "dataset/training_set"cats_label_dir = "cats"dogs_label_dir = "dogs"cats_dataset = MyData(root_dir, cats_label_dir)dogs_dataset = MyData(root_dir, dogs_label_dir)img1, label1 = cats_dataset[1]img2, label2 = dogs_dataset[1]# img1.show()# img2.show()train_dataset = cats_dataset + dogs_dataset # 合并数据集print(len(train_dataset))print(len(cats_dataset))print(len(dogs_dataset))
TensorBoard的使用(一)
from torch.utils.tensorboard import SummaryWriterwriter = SummaryWriter("logs") # 事件文件存储地址# writer.add_image()# y = xfor i in range(100): writer.add_scalar("y=2x", 2*i, i) # 标量的意思 参数2*i 是x轴 i是y轴writer.close()
- 安装tensorboard
pip install tensorboard
- 运行tensorboard
tensorboard --logdir="logs" --port=6007(这里是指定端口号,也可以不写--port,默认6006)
利用Opencv读取图片,获得numpy型图片数据
import numpy as npfrom torch.utils.tensorboard import SummaryWriterimport cv2writer = SummaryWriter("logs") # 事件文件存储地址img_array = cv2.imread("./dataset/training_set/cats/cat.2.jpg")# print(img_array.shape)writer.add_image("test",img_array,2,dataformats='HWC')# y = xfor i in range(100): writer.add_scalar("y=2x", 2 * i, i) # 标量的意思writer.close()
Transforms使用
![Snipaste_2023-11-01_10-52-09](./pytorch截图/Snipaste_2023-11-01_10-52-09.png)from torchvision import transformsfrom PIL import Image# python当中的用法# tensor数据类型# 通过transforms.ToTensor去解决两个问题# 1.transforms如何使用(pyhton)# 2.为什么需要Tensor数据类型:因为里面包装了神经网络模型训练的数据类型# 绝对路径 E:\Project\Code_Python\Learn_pytorch\learn_pytorch\dataset\training_set\cats\cat.6.jpg# 相对路径 dataset/training_set/cats/cat.6.jpgimg_path = "dataset/training_set/cats/cat.6.jpg"img = Image.open(img_path)# 1.transforms如何使用(pyhton)tensor_trans = transforms.ToTensor()tensor_img = tensor_trans(img)print(tensor_img.shape)
常见的Transforms
from PIL import Imagefrom torchvision import transformsfrom torch.utils.tensorboard import SummaryWriterwriter = SummaryWriter("logs")img = Image.open("dataset/training_set/cats/cat.11.jpg")print(img)# ToTensor的使用trans_totensor = transforms.ToTensor()img_tensor = trans_totensor(img)writer.add_image("ToTensor", img_tensor)# Normalizeprint(img_tensor[0][0][0])trans_norm = transforms.Normalize([1, 1, 1], [1, 1, 1])img_norm = trans_norm(img_tensor)print(img_norm[0][0][0])writer.add_image("Normalize", img_norm, 0)# Resizeprint(img.size)trans_resize = transforms.Resize((512, 512))# img PIL -> resize -> img_resize PILimg_resize = trans_resize(img)# img_resize PIL -> totensor -> img_resize tensorimg_resize = trans_totensor(img_resize)# print(img_resize)writer.add_image("Resize", img_resize, 1)# Compose - resize - 2trans_resize_2 = transforms.Resize(144)# PIL -> PIL -> tensor数据类型trans_compose = transforms.Compose([trans_resize_2, trans_totensor])img_resize_2 = trans_compose(img)writer.add_image("Resize_Compose", img_resize_2, 2)writer.close()
torchvision中的数据集使用
import torchvisionfrom torch.utils.tensorboard import SummaryWriterdataset_transforms = torchvision.transforms.Compose([ torchvision.transforms.ToTensor()])# 下载数据集train_set = torchvision.datasets.CIFAR10(root="./dataset", train=True, transform=dataset_transforms, download=True)test_set = torchvision.datasets.CIFAR10(root="./dataset", train=False, transform=dataset_transforms, download=True)print(test_set[0])print(test_set.classes)img, target = test_set[0]print(img)print(target)print(test_set.classes[target])# img.show()writer = SummaryWriter("p10")for i in range(10): img, target = test_set[i] writer.add_image("test_set", img, i)writer.close()
DataLoad的使用
import torchvisionfrom torch.utils.data import DataLoaderfrom torch.utils.tensorboard import SummaryWriter# 准备的测试数据集test_data = torchvision.datasets.CIFAR10("./dataset", train=False, transform=torchvision.transforms.ToTensor())test_loader = DataLoader(dataset=test_data, batch_size=64, shuffle=True, num_workers=0, drop_last=False)# 这里数据集是之前官网下载下来的# 测试数据集中第一张图片及targetimg, target = test_data[0]print(img.shape)print(target)writer = SummaryWriter("dataloader")step = 0for data in test_loader: imgs, targets = data # print(imgs.shape) # print(targets) writer.add_images("test_data", imgs, step) step = step + 1writer.close()
- 最后一次数据不满足64张 于是将参数设置drop_last=True
import torchvisionfrom torch.utils.data import DataLoaderfrom torch.utils.tensorboard import SummaryWriter# 准备的测试数据集test_data = torchvision.datasets.CIFAR10("./dataset", train=False, transform=torchvision.transforms.ToTensor())test_loader = DataLoader(dataset=test_data, batch_size=64, shuffle=True, num_workers=0, drop_last=True)# 这里数据集是之前官网下载下来的# 测试数据集中第一张图片及targetimg, target = test_data[0]print(img.shape)print(target)writer = SummaryWriter("dataloader_drop_last")step = 0for data in test_loader: imgs, targets = data # print(imgs.shape) # print(targets) writer.add_images("test_data", imgs, step) step = step + 1writer.close()
- shuffle 使用
- True 两边图片选取不一样
- False两边图片选取一样
import torchvisionfrom torch.utils.data import DataLoaderfrom torch.utils.tensorboard import SummaryWriter# 准备的测试数据集test_data = torchvision.datasets.CIFAR10("./dataset", train=False, transform=torchvision.transforms.ToTensor())test_loader = DataLoader(dataset=test_data, batch_size=64, shuffle=True, num_workers=0, drop_last=True)# 这里数据集是之前官网下载下来的# 测试数据集中第一张图片及targetimg, target = test_data[0]print(img.shape)print(target)writer = SummaryWriter("dataloader")for epoch in range(2): step = 0 for data in test_loader: imgs, targets = data # print(imgs.shape) # print(targets) writer.add_images("Eopch: {}".format(epoch), imgs, step) step = step + 1writer.close()
神经网络的基本骨架
import torchfrom torch import nnclass ConvModel(nn.Module): def __init__(self, *args, **kwargs) -> None: super().__init__(*args, **kwargs) def forward(self, input): output = input + 1 return outputconvmodel = ConvModel()x = torch.tensor(1.0)output = convmodel(x)print(output)
卷积操作
import torchimport torch.nn.functional as F# 卷积输入input = torch.tensor([[1, 2, 0, 3, 1], [0, 1, 2, 3, 1], [1, 2, 1, 0, 0], [5, 2, 3, 1, 1], [2, 1, 0, 1, 1]])# 卷积核kernel = torch.tensor([[1, 2, 1], [0, 1, 0], [2, 1, 0]])# 进行尺寸转换input = torch.reshape(input, (1, 1, 5, 5))kernel = torch.reshape(kernel, (1, 1, 3, 3))print(input.shape)print(kernel.shape)output = F.conv2d(input, kernel, stride=1)print(output)output2 = F.conv2d(input, kernel, stride=2)print(output2)
- padding
# padding 默认填充值是0output3 = F.conv2d(input, kernel, stride=1, padding=1)print(output3)
结果:
tensor([[[[ 1, 3, 4, 10, 8],
[ 5, 10, 12, 12, 6],
[ 7, 18, 16, 16, 8],
[11, 13, 9, 3, 4],
[14, 13, 9, 7, 4]]]])
神经网络-卷积层
import torchimport torchvisionfrom torch.utils.data import DataLoaderfrom torch import nnfrom torch.nn import Conv2dfrom torch.utils.tensorboard import SummaryWriterdataset = torchvision.datasets.CIFAR10("./dataset", train=False, transform=torchvision.transforms.ToTensor(), download=True)dataloader = DataLoader(dataset, batch_size=64)class NN_Conv2d(nn.Module): def __init__(self): super().__init__() self.conv1 = Conv2d(in_channels=3, out_channels=6, kernel_size=3, stride=1, padding=0) def forward(self, x): x = self.conv1(x) return xnn_conv2d = NN_Conv2d()# print(nn_conv2d)writer = SummaryWriter("./logs")step = 0for data in dataloader: imgs, targets = data output = nn_conv2d(imgs) print(f"imgs: {imgs.shape}") print(f"output: {output.shape}") # 输入的大小 torch.Size([64,3,32,32]) writer.add_images("input", imgs, step) # 卷积后输出的大小 torch.Size([64,,6,30,30) --> [xxx,3,30,30] output = torch.reshape(output, (-1, 3, 30, 30)) writer.add_images("output", output, step) step += 1
# import numpy as npimport torchimport torchvisionfrom torch import nnfrom torch.nn import Conv2dfrom torch.utils.tensorboard import SummaryWriterimport cv2from torchvision import transforms# 创建卷积模型class NN_Conv2d(nn.Module): def __init__(self): super().__init__() self.conv1 = Conv2d(in_channels=3, out_channels=6, kernel_size=3, stride=1, padding=1) def forward(self, x): x = self.conv1(x) return xnn_conv2d = NN_Conv2d()writer = SummaryWriter('logs_test')input_img = cv2.imread("dataset/ice.jpg")# 转化为tensor类型trans_tensor = transforms.ToTensor()input_img = trans_tensor(input_img)# 设置input输入大小input_img = torch.reshape(input_img, (-1, 3, 1312, 2100))print(input_img.shape)writer.add_images("input_img", input_img, 1)# 进行卷积输出output = nn_conv2d(input_img)output = torch.reshape(output, (-1, 3, 1312, 2100))print(output.shape)writer.add_images('output_test', output, 1)writer.close()
神经网络-最大池化
import torchfrom torch import nnfrom torch.nn import MaxPool2dinput_img = torch.tensor([[1, 2, 0, 3, 1], [0, 1, 2, 3, 1], [1, 2, 1, 0, 0], [5, 2, 3, 1, 1], [2, 1, 0, 1, 1]], dtype=torch.float32)input_img = torch.reshape(input_img, (-1, 1, 5, 5))print(input_img.shape)# 简单的搭建卷积神经网络class Nn_Conv_Maxpool(nn.Module): def __init__(self): super().__init__() self.maxpool1 = MaxPool2d(kernel_size=3, ceil_mode=True) def forward(self, input_img): output = self.maxpool1(input_img) return outputnn_conv_maxpool = Nn_Conv_Maxpool()output = nn_conv_maxpool(input_img)print(output)
import torchimport torchvisionfrom torch import nnfrom torch.nn import MaxPool2dfrom torch.utils.data import DataLoaderfrom torch.utils.tensorboard import SummaryWriterdataset = torchvision.datasets.CIFAR10('./dataset', train=False, download=True, transform=torchvision.transforms.ToTensor())dataloader = DataLoader(dataset, batch_size=64)# 简单的搭建卷积神经网络class Nn_Conv_Maxpool(nn.Module): def __init__(self): super().__init__() self.maxpool1 = MaxPool2d(kernel_size=3, ceil_mode=True) def forward(self, input_img): output = self.maxpool1(input_img) return outputnn_conv_maxpool = Nn_Conv_Maxpool()writer = SummaryWriter('logs_maxpool')step = 0for data in dataloader: imgs, targets = data writer.add_images('input', imgs, step) output = nn_conv_maxpool(imgs) writer.add_images('output', output, step) step += 1writer.close()
神经网络-非线性激活
- ReLU
import torchfrom torch import nnfrom torch.nn import ReLUinput = torch.tensor([[1, -0.5], [-1, 3]])input = torch.reshape(input, (-1, 1, 2, 2))print(input.shape)class Nn_Network_Relu(nn.Module): def __init__(self): super().__init__() self.relu1 = ReLU() def forward(self, input): output = self.relu1(input) return outputnn_relu = Nn_Network_Relu()output = nn_relu(input)print(outputz)
- 使用图片进行演示
import torchimport torchvisionfrom torch import nnfrom torch.nn import ReLUfrom torch.nn import Sigmoidfrom torch.utils.data import DataLoaderfrom torch.utils.tensorboard import SummaryWriterinput = torch.tensor([[1, -0.5], [-1, 3]])input = torch.reshape(input, (-1, 1, 2, 2))print(input.shape)dataset = torchvision.datasets.CIFAR10('./dataset', train=False, download=True, transform=torchvision.transforms.ToTensor())dataloader = DataLoader(dataset, batch_size=64)class Nn_Network_Relu(nn.Module): def __init__(self): super().__init__() self.relu1 = ReLU() self.sigmoid1 = Sigmoid() def forward(self, input): output = self.sigmoid1(input) return outputnn_relu = Nn_Network_Relu()nn_sigmoid = Nn_Network_Relu()writer = SummaryWriter('logs_sigmoid')step = 0for data in dataloader: imgs, targets = data writer.add_images("input_imgs", imgs, step) output = nn_sigmoid(imgs) writer.add_images("output", output, step) step += 1writer.close()
神经网络-线性层及其他层
- 线性层(linear layer)通常也被称为全连接层(fully connected layer)。在深度学习模型中,线性层和全连接层指的是同一种类型的神经网络层,它将输入数据与权重相乘并加上偏置,然后通过一个非线性激活函数输出结果。可以实现特征提取、降维等功能。
- 以VGG16网络模型为例,全连接层共有3层,分别是4096-4096-1000,这里的1000为ImageNet中数据集类别的数量。
import torchimport torchvisionfrom torch.utils.data import DataLoaderfrom torch import nnfrom torch.nn import Lineardataset = torchvision.datasets.CIFAR10('./dataset', train=False, transform=torchvision.transforms.ToTensor(), download=True)dataloader = DataLoader(dataset, batch_size=64)class Nn_LinearModel(nn.Module): def __init__(self): super().__init__() self.linear1 = Linear(196608, 10) def forward(self, input): output = self.linear1(input) return outputnn_linearmodel = Nn_LinearModel()for data in dataloader: imgs, targets = data print(imgs.shape) output = torch.flatten(imgs) print(output.shape) output = nn_linearmodel(output) print(output.shape)
torch.flatten: 将输入(Tensor)展平为一维张量
batch_size 一般不展开,以MNIST数据集的一个 batch 为例将其依次转化为例:
[64, 1, 28, 28] -> [64, 784] -> [64, 128]
神经网络-实践以及Sequential
import torchfrom torch import nnfrom torch.nn import Conv2d, MaxPool2d, Flatten, Linearclass Nn_SeqModel(nn.Module): def __init__(self): super().__init__() self.conv1 = Conv2d(3, 32, 5, padding=2) self.maxpool1 = MaxPool2d(2) self.conv2 = Conv2d(32, 32, 5, padding=2) self.maxpool2 = MaxPool2d(2) self.conv3 = Conv2d(32, 64, 5, padding=2) self.maxpool3 = MaxPool2d(2) self.flatten = Flatten() self.linear1 = Linear(1024, 64) self.linear2 = Linear(64, 10) def forward(self, x): x = self.conv1(x) x = self.maxpool1(x) x = self.conv2(x) x = self.maxpool2(x) x = self.conv3(x) x = self.maxpool2(x) x = self.flatten(x) x = self.linear1(x) x = self.linear2(x) return xif __name__ == '__main__': nn_seqmodel = Nn_SeqModel() print(nn_seqmodel) # 对网络模型进行检验 input = torch.ones((64, 3, 32, 32)) output = nn_seqmodel(input) print(output.shape)
Nn_SeqModel(
(conv1): Conv2d(3, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(maxpool1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(conv2): Conv2d(32, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(maxpool2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(conv3): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(maxpool3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(flatten): Flatten(start_dim=1, end_dim=-1)
(linear1): Linear(in_features=1024, out_features=64, bias=True)
(linear2): Linear(in_features=64, out_features=10, bias=True)
)
torch.Size([64, 10])
- Sequential 使代码更加简洁
import torchfrom torch import nnfrom torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequentialclass Nn_SeqModel(nn.Module): def __init__(self): super().__init__() # self.conv1 = Conv2d(3, 32, 5, padding=2) # self.maxpool1 = MaxPool2d(2) # self.conv2 = Conv2d(32, 32, 5, padding=2) # self.maxpool2 = MaxPool2d(2) # self.conv3 = Conv2d(32, 64, 5, padding=2) # self.maxpool3 = MaxPool2d(2) # self.flatten = Flatten() # self.linear1 = Linear(1024, 64) # self.linear2 = Linear(64, 10) self.model1 = Sequential( Conv2d(3, 32, 5, padding=2), MaxPool2d(2), Conv2d(32, 32, 5, padding=2), MaxPool2d(2), Conv2d(32, 64, 5, padding=2), MaxPool2d(2), Flatten(), Linear(1024, 64), Linear(64, 10) ) def forward(self, x): # x = self.conv1(x) # x = self.maxpool1(x) # x = self.conv2(x) # x = self.maxpool2(x) # x = self.conv3(x) # x = self.maxpool2(x) # x = self.flatten(x) # x = self.linear1(x) # x = self.linear2(x) x = self.model1(x) return xif __name__ == '__main__': nn_seqmodel = Nn_SeqModel() print(nn_seqmodel) # 对网络模型进行检验 input = torch.ones((64, 3, 32, 32)) output = nn_seqmodel(input) print(output.shape)
Nn_SeqModel(
(model1): Sequential(
(0): Conv2d(3, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(2): Conv2d(32, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(4): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(5): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(6): Flatten(start_dim=1, end_dim=-1)
(7): Linear(in_features=1024, out_features=64, bias=True)
(8): Linear(in_features=64, out_features=10, bias=True)
)
)
torch.Size([64, 10])
if __name__ == '__main__': nn_seqmodel = Nn_SeqModel() print(nn_seqmodel) # 对网络模型进行检验 input = torch.ones((64, 3, 32, 32)) output = nn_seqmodel(input) print(output.shape) # 查看网络结构 writer = SummaryWriter('./logs_seq') writer.add_graph(nn_seqmodel, input) writer.close()
- 查看网络结构
损失函数与反向传播
- loos 损失函数
- 注意输入和输出
import torchfrom torch.nn import L1Lossinputs = torch.tensor([1, 2, 3], dtype=torch.float32)targets = torch.tensor([1, 2, 5], dtype=torch.float32)inputs = torch.reshape(inputs, (1, 1, 1, 3))targets = torch.reshape(targets, (1, 1, 1, 3))loss = L1Loss() # reduction='sum'result = loss(inputs, targets)print(result)
tensor(0.6667)
- 交叉熵loss
x = torch.tensor([0.1, 0.2, 0.3])y = torch.tensor([1])x = torch.reshape(x, (1, 3))loss_cross = nn.CrossEntropyLoss()result_cross = loss_cross(x, y)print(f"The result_cross of CrossEntropyLoss: {result_cross}")
The result_cross of CrossEntropyLoss: 1.1019428968429565
- 测试
import torchimport torchvisionfrom torch import nnfrom torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequentialfrom torch.utils.tensorboard import SummaryWriterfrom torch.utils.data import DataLoaderdataset = torchvision.datasets.CIFAR10("./dataset", train=False, transform=torchvision.transforms.ToTensor(), download=True)dataloader = DataLoader(dataset, batch_size=1)class Nn_LossNetworkModel(nn.Module): def __init__(self): super().__init__() self.model1 = Sequential( Conv2d(3, 32, 5, padding=2), MaxPool2d(2), Conv2d(32, 32, 5, padding=2), MaxPool2d(2), Conv2d(32, 64, 5, padding=2), MaxPool2d(2), Flatten(), Linear(1024, 64), Linear(64, 10) ) def forward(self, x): x = self.model1(x) return xloss = nn.CrossEntropyLoss()if __name__ == '__main__': nn_lossmodel = Nn_LossNetworkModel() for data in dataloader: imgs, targets = data outputs = nn_lossmodel(imgs) result_loss = loss(outputs, targets) print(f"the result_loss is : {result_loss}")
- 梯度下降 进行反向传播
- debug测试查看 grad
if __name__ == '__main__': nn_lossmodel = Nn_LossNetworkModel() for data in dataloader: imgs, targets = data outputs = nn_lossmodel(imgs) result_loss = loss(outputs, targets) # print(f"the result_loss is : {result_loss}") result_loss.backward() print("ok")
优化器
import torchimport torchvisionfrom torch import nnfrom torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequentialfrom torch.utils.tensorboard import SummaryWriterfrom torch.utils.data import DataLoader# 加载数据集转换为tensor类型dataset = torchvision.datasets.CIFAR10("./dataset", train=False, transform=torchvision.transforms.ToTensor(), download=True)# 使用DataLoader将数据集进行加载dataloader = DataLoader(dataset, batch_size=1)# 创建网络class Nn_LossNetworkModel(nn.Module): def __init__(self): super().__init__() self.model1 = Sequential( Conv2d(3, 32, 5, padding=2), MaxPool2d(2), Conv2d(32, 32, 5, padding=2), MaxPool2d(2), Conv2d(32, 64, 5, padding=2), MaxPool2d(2), Flatten(), Linear(1024, 64), Linear(64, 10) ) def forward(self, x): x = self.model1(x) return xif __name__ == '__main__': loss = nn.CrossEntropyLoss() nn_lossmodel = Nn_LossNetworkModel() optim = torch.optim.SGD(nn_lossmodel.parameters(), lr=0.01) for data in dataloader: imgs, targets = data outputs = nn_lossmodel(imgs) result_loss = loss(outputs, targets) optim.zero_grad() result_loss.backward() optim.step()
if __name__ == '__main__': loss = nn.CrossEntropyLoss() nn_lossmodel = Nn_LossNetworkModel() optim = torch.optim.SGD(nn_lossmodel.parameters(), lr=0.01) for epoch in range(20): running_loss = 0.0 for data in dataloader: imgs, targets = data outputs = nn_lossmodel(imgs) result_loss = loss(outputs, targets) optim.zero_grad() result_loss.backward() optim.step() running_loss = running_loss + result_loss print("running_loss: ", running_loss)
Files already downloaded and verified
running_loss: tensor(18788.4355, grad_fn=)
running_loss: tensor(16221.9961, grad_fn=)……..
现有网络模型的使用以及修改
import torchvisionimport torchfrom torch import nn# train_data = torchvision.datasets.ImageNet("./data_image_net", split="train",# transform=torchvision.transforms.ToTensor(), download=True)vgg16_false = torchvision.models.vgg16(pretrained=False)vgg16_true = torchvision.models.vgg16(pretrained=True)print('ok')print(vgg16_true)train_data = torchvision.datasets.CIFAR10('./dataset', train=True, transform=torchvision.transforms.ToTensor(), download=True)# vgg16_true.add_module('add_linear', nn.Linear(1000, 10))vgg16_true.classifier.add_module('add_linear', nn.Linear(1000, 10))print(vgg16_true)print(vgg16_false)vgg16_false.classifier[6] = nn.Linear(4096, 10)print(vgg16_false)
网络模型的保存与读取
- save
import torchimport torchvisionfrom torch import nnvgg16 = torchvision.models.vgg16(pretrained=False)# 保存方式1: 模型结构+模型参数torch.save(vgg16, "vgg16_method1.pth")# 保存方式2: 模型参数(官方推荐)torch.save(vgg16.state_dict(), "vgg16_method2.pth")# 陷阱class Nn_Model(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(3, 64, 3) def forward(self, x): x = self.conv1(x) return xnn_model = Nn_Model()torch.save(nn_model, "nnModel_method1.pth")
- load
import torchimport torchvisionfrom torch import nnfrom p19_model_save import *# 加载方式1 ---> 对应保存方式1 ,加载模型model = torch.load("vgg16_method1.pth")# print(model)# 加载方式2model2 = torch.load("vgg16_method2.pth")print(model2)# 方式2 的回复网络模型结构vgg16 = torchvision.models.vgg16(pretrained=False)vgg16.load_state_dict(torch.load("vgg16_method2.pth"))print(vgg16)# 陷阱1# class Nn_Model(nn.Module):# def __init__(self):# super().__init__()# self.conv1 = nn.Conv2d(3, 64, 3)## def forward(self, x):# x = self.conv1(x)# return xmodel1 = torch.load("nnModel_method1.pth")print(model1)
完成的模型训练套路(一)
- 建包 train.py 和 model.py
- model.py
import torchfrom torch import nn# 搭建神经网络class Nn_Neural_NetWork(nn.Module): def __init__(self): super().__init__() self.model = nn.Sequential( nn.Conv2d(3, 32, 5, 1, 2), nn.MaxPool2d(2), nn.Conv2d(32, 32, 5, 1, 2), nn.MaxPool2d(2), nn.Conv2d(32, 64, 5, 1, 2), nn.MaxPool2d(2), nn.Flatten(), nn.Linear(64 * 4 * 4, 64), nn.Linear(64, 10) ) def forward(self, x): x = self.model(x) return xif __name__ == '__main__': # 测试一下模型准确性 nn_model = Nn_Neural_NetWork() input = torch.ones((64, 3, 32, 32)) output = nn_model(input) print(output.shape)
- train.py
import torchimport torchvisionfrom torch import nnfrom torch.utils.data import DataLoaderfrom torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequentialfrom model import *# 准备数据集train_data = torchvision.datasets.CIFAR10(root='./data', train=True, transform=torchvision.transforms.ToTensor(), download=True)test_data = torchvision.datasets.CIFAR10(root='./data', train=False, transform=torchvision.transforms.ToTensor(), download=True)train_data_size = len(train_data)test_data_size = len(test_data)print("训练数据集的长度为:{}".format(train_data_size))print("测试数据集的长度为:{}".format(test_data_size))# 利用DataLoader 来加载数据集train_loader = DataLoader(train_data, batch_size=64)test_loader = DataLoader(test_data, batch_size=64)# 创建网络模型nn_model = Nn_Neural_NetWork()# 损失函数loss_fn = nn.CrossEntropyLoss()# 优化器# 1e-2 = 1 x (10)^(-2) = 1/100 = 0.01learning_rate = 0.01optimizer = torch.optim.SGD(nn_model.parameters(), lr=learning_rate)# 设置训练网络的一些参数# 记录训练的次数total_train_step = 0# 记录测试的次数total_test_step = 0# 训练的轮数epoch = 10for i in range(epoch): print("--------第{}轮训练开始-------".format(i + 1)) # 训练步骤开始 for data in train_loader: imgs, targets = data output = nn_model(imgs) loss = loss_fn(output, targets) # 优化器优化模型 optimizer.zero_grad() loss.backward() optimizer.step() total_train_step += 1 print("训练次数: {}, Loss: {}".format(total_train_step, loss.item()))
完成的模型训练套路(二)
- train.py
- 增加了tenorboard
- 增加了精确度Accuracy
import torchimport torchvisionfrom torch import nnfrom torch.utils.data import DataLoaderfrom torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequentialfrom torch.utils.tensorboard import SummaryWriterfrom p20_model import *# 准备数据集train_data = torchvision.datasets.CIFAR10(root='./data', train=True, transform=torchvision.transforms.ToTensor(), download=True)test_data = torchvision.datasets.CIFAR10(root='./data', train=False, transform=torchvision.transforms.ToTensor(), download=True)train_data_size = len(train_data)test_data_size = len(test_data)print("训练数据集的长度为:{}".format(train_data_size))print("测试数据集的长度为:{}".format(test_data_size))# 利用DataLoader 来加载数据集train_loader = DataLoader(train_data, batch_size=64)test_loader = DataLoader(test_data, batch_size=64)# 创建网络模型nn_model = Nn_Neural_NetWork()# 损失函数loss_fn = nn.CrossEntropyLoss()# 优化器# 1e-2 = 1 x (10)^(-2) = 1/100 = 0.01learning_rate = 0.01optimizer = torch.optim.SGD(nn_model.parameters(), lr=learning_rate)# 设置训练网络的一些参数# 记录训练的次数total_train_step = 0# 记录测试的次数total_test_step = 0# 训练的轮数epoch = 10# (可加可不加) 添加tensorboardwriter = SummaryWriter('./logs_train')for i in range(epoch): print("--------第{}轮训练开始-------".format(i + 1)) # 训练步骤开始 for data in train_loader: imgs, targets = data output = nn_model(imgs) loss = loss_fn(output, targets) # 优化器优化模型 optimizer.zero_grad() loss.backward() optimizer.step() total_train_step += 1 if total_train_step % 100 == 0: print("训练次数: {}, Loss: {}".format(total_train_step, loss.item())) writer.add_scalar("train_loss", loss.item(), total_train_step) # 测试步骤开始 total_test_loss = 0 # 精确度 total_accuracy = 0 with torch.no_grad(): for data in test_loader: imgs, targets = data outputs = nn_model(imgs) loss = loss_fn(outputs, targets) total_test_loss += loss accuracy = (outputs.argmax(1) == targets).sum() total_accuracy += accuracy print("整体测试集上的Loss: {}".format(total_test_loss)) print("整体测试集上的正确率Accuracy: {}".format(total_accuracy / test_data_size)) writer.add_scalar("test_loss", total_test_loss, total_test_step) writer.add_scalar("test_accuracy", total_accuracy / test_data_size, total_test_step) total_test_step += 1 # 保存模型结果 torch.save(nn_model, "model_{}.pth".format(i)) print("模型保存")writer.close()