在做中文文本情感分析model类定义的时候报错如下:
有两种可能:
1.重写父类函数时,函数名称写错,我将写成了最终导致程序报错:
import torchimport torch.nn as nnimport torch.nn.functional as Fimport numpy as npclass Model(nn.Module):def __init__(self,config):super(Model, self).__init__()self.embeding = nn.Embedding(config.n_vocab, config.embed_size,padding_idx=config.n_vocab - 1)self.lstm = nn.LSTM(config.embed_size, config.hidden_size,config.num_layers,bidirectional=True,batch_first=True,dropout=config.dropout)self.maxpool = nn.MaxPool1d(config.pad_size)self.fc = nn.Linear(config.hidden_size * 2 + config.embed_size, config.num_classes)self.softmax = nn.Softmax(dim=1)def forword(self,x):embed = self.embeding(x)out,_ = self.lstm(embed)out = torch.cat((embed,out),2)out = F.relu(out)out = out.permute(0,2,1)out = self.maxpool(out).reshape(out.size()[0],-1)out = self.fc(out)out = self.softmax(out)return outif __name__ == "__main__":from configs import Configcfg = Config()cfg.pad_size = 640model_textcls = Model(config = cfg)input_tensor = torch.tensor([i for i in range(640)]).reshape([1,640])out_tensor = model_textcls.forward(input_tensor)print(out_tensor.size())print(out_tensor)
2.def forward函数与def __init__(self,config):一定要对齐。