背景

基于elasticsearch-5.6.0
机器配置:3个云ecs节点,16G,4核,机械硬盘
优化前,写入速度平均3000条/s,一遇到压测,写入速度骤降,甚至es直接频率gc、oom等;优化后,写入速度平均8000条/s,遇到压测,能在压测结束后30分钟内消化完数据,各项指标回归正常。

生产配置

这里我先把自己优化的结果贴出来,后面有参数的详解:

elasticsearch.yml中增加如下设置

indices.memory.index_buffer_size: 20%indices.memory.min_index_buffer_size: 96mb# Search poolthread_pool.search.size: 5thread_pool.search.queue_size: 100# 这个参数慎用!强制修改cpu核数,以突破写线程数限制# processors: 16# Bulk pool#thread_pool.bulk.size: 16thread_pool.bulk.queue_size: 300# Index pool#thread_pool.index.size: 16thread_pool.index.queue_size: 300indices.fielddata.cache.size: 40%discovery.zen.fd.ping_timeout: 120sdiscovery.zen.fd.ping_retries: 6discovery.zen.fd.ping_interval: 30s

索引优化配置:

PUT /_template/elk{"order": 6,"template": "logstash-*",#这里配置模板匹配的Index名称"settings": {"number_of_replicas" : 0,#副本数为0,需要查询性能高可以设置为1"number_of_shards" : 6,#分片数为6, 副本为1时可以设置成5 "refresh_interval": "30s", "index.translog.durability": "async","index.translog.sync_interval": "30s"}}

优化参数详解

精细设置全文域: string类型字段默认会分词,不仅会额外占用资源,而且会影响创建索引的速度。所以,把不需要分词的字段设置为not_analyzed

禁用_all字段: 对于日志和apm数据,目前没有场景会使用到

副本数量设置为0: 因为我们目前日志数据和apm数据在es只保留最近7天的量,全量日志保存在hadoop,可以根据需要通过spark读回到es – 况且副本数量是可以随时修改的,区别分片数量

使用es自动生成id: es对于自动生成的id有优化,避免了版本查找。因为其生成的id是唯一的

设置index.refresh_interval: 索引刷新间隔,默认为1s。因为不需要如此高的实时性,我们修改为30s – 扩展学习:刷新索引到底要做什么事情

设置段合并的线程数量:

curl -XPUT ‘your-es-host:9200/nginx_log-2018-03-20/_settings’ -d ‘{
“index.merge.scheduler.max_thread_count” : 1
}’

段合并的计算量庞大,而且还要吃掉大量磁盘I/O。合并在后台定期操作,因为他们可能要很长时间才能完成,尤其是比较大的段

机械磁盘在并发I/O支持方面比较差,所以我们需要降低每个索引并发访问磁盘的线程数。这个设置允许max_thread_count + 2个线程同时进行磁盘操作,也就是设置为1允许三个线程

扩展学习:什么是段(segment)?如何合并段?为什么要合并段?(what、how、why)另外,ES 系列面试题和答案全部整理好了,微信搜索​Java技术栈,在后台发送:面试,​可以在线阅读。

1.设置异步刷盘事务日志文件:

“index.translog.durability”: “async”,
“index.translog.sync_interval”: “30s”

对于日志场景,能够接受部分数据丢失。同时有全量可靠日志存储在hadoop,丢失了也可以从hadoop恢复回来

2.elasticsearch.yml中增加如下设置:

indices.memory.index_buffer_size: 20%
indices.memory.min_index_buffer_size: 96mb

已经索引好的文档会先存放在内存缓存中,等待被写到到段(segment)中。缓存满的时候会触发段刷盘(吃i/o和cpu的操作)。默认最小缓存大小为48m,不太够,最大为堆内存的10%。对于大量写入的场景也显得有点小。

扩展学习:数据写入流程是怎么样的(具体到如何构建索引)?

1.设置index、merge、bulk、search的线程数和队列数。例如以下elasticsearch.yml设置:

# Search poolthread_pool.search.size: 5thread_pool.search.queue_size: 100# 这个参数慎用!强制修改cpu核数,以突破写线程数限制# processors: 16# Bulk poolthread_pool.bulk.size: 16thread_pool.bulk.queue_size: 300# Index poolthread_pool.index.size: 16thread_pool.index.queue_size: 300

2.设置filedata cache大小,例如以下elasticsearch.yml配置:

indices.fielddata.cache.size: 15%
filedata cache的使用场景是一些聚合操作(包括排序),构建filedata cache是个相对昂贵的操作。所以尽量能让他保留在内存中

然后日志场景聚合操作比较少,绝大多数也集中在半夜,所以限制了这个值的大小,默认是不受限制的,很可能占用过多的堆内存

扩展学习:什么是filedata?构建流程是怎样的?为什么要用filedata?(what、how、why)

1.设置节点之间的故障检测配置,例如以下elasticsearch.yml配置:

discovery.zen.fd.ping_timeout: 120s
discovery.zen.fd.ping_retries: 6
discovery.zen.fd.ping_interval: 30s

大数量写入的场景,会占用大量的网络带宽,很可能使节点之间的心跳超时。并且默认的心跳间隔也相对过于频繁(1s检测一次)

此项配置将大大缓解节点间的超时问题

后记

这里仅仅是记录对我们实际写入有提升的一些配置项,没有针对个别配置项做深入研究。
————————————————
版权声明:本文为CSDN博主「Java技术栈」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/youanyyou/article/details/124756263