文章目录
- 1、从基础的客户端说起
- 1.1、消息发送者主流程
- 1.2、消息消费者主流程
- 2、从客户端属性来梳理客户端工作机制
- 2.1、消费者分组消费机制
1、从基础的客户端说起
Kafka提供了非常简单的客户端API。只需要引入一个Maven依赖即可:
<dependency><groupId>org.apache.kafka</groupId><artifactId>kafka_2.13</artifactId><version>3.4.0</version> </dependency>
1.1、消息发送者主流程
然后可以使用Kafka提供的Producer类,快速发送消息。
public class MyProducer { private static final String BOOTSTRAP_SERVERS = "worker1:9092,worker2:9092,worker3:9092"; private static final String TOPIC = "disTopic"; public static void main(String[] args) throws ExecutionException, InterruptedException { //PART1:设置发送者相关属性 Properties props = new Properties(); // 此处配置的是kafka的端口 props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, BOOTSTRAP_SERVERS); // 配置key的序列化类 props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringSerializer"); // 配置value的序列化类 props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringSerializer"); Producer<String,String> producer = new KafkaProducer<>(props); CountDownLatch latch = new CountDownLatch(5); for(int i = 0; i < 5; i++) { //Part2:构建消息 ProducerRecord<String, String> record = new ProducerRecord<>(TOPIC, Integer.toString(i), "MyProducer" + i); //Part3:发送消息 //单向发送:不关心服务端的应答。 producer.send(record); System.out.println("message "+i+" sended"); //同步发送:获取服务端应答消息前,会阻塞当前线程。 RecordMetadata recordMetadata = producer.send(record).get(); String topic = recordMetadata.topic(); int partition = recordMetadata.partition(); long offset = recordMetadata.offset(); String message = recordMetadata.toString(); System.out.println("message:["+ message+"] sended with topic:"+topic+"; partition:"+partition+ ";offset:"+offset); //异步发送:消息发送后不阻塞,服务端有应答后会触发回调函数 producer.send(record, new Callback() { @Override public void onCompletion(RecordMetadata recordMetadata, Exception e) { if(null != e){ System.out.println("消息发送失败,"+e.getMessage()); e.printStackTrace(); }else{ String topic = recordMetadata.topic(); long offset = recordMetadata.offset(); String message = recordMetadata.toString(); System.out.println("message:["+ message+"] sended with topic:"+topic+";offset:"+offset); } latch.countDown(); } }); } //消息处理完才停止发送者。 latch.await(); producer.close(); }}
整体来说,构建Producer分为三个步骤:
- 设置Producer核心属性 :Producer可选的属性都可以由ProducerConfig类管理。比如ProducerConfig.BOOTSTRAP_SERVERS_CONFIG属性,显然就是指发送者要将消息发到哪个Kafka集群上。这是每个Producer必选的属性。在ProducerConfig中,对于大部分比较重要的属性,都配置了对应的DOC属性进行描述。
- 构建消息:Kafka的消息是一个Key-Value结构的消息。其中,key和value都可以是任意对象类型。其中,key主要是用来进行Partition分区的,业务上更关心的是value。
- 使用Producer发送消息:通常用到的就是单向发送、同步发送和异步发送者三种发送方式。
1.2、消息消费者主流程
接下来可以使用Kafka提供的Consumer类,快速消费消息。
public class MyConsumer { private static final String BOOTSTRAP_SERVERS = "worker1:9092,worker2:9092,worker3:9092"; private static final String TOPIC = "disTopic"; public static void main(String[] args) { //PART1:设置发送者相关属性 Properties props = new Properties(); //kafka地址 props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, BOOTSTRAP_SERVERS); //每个消费者要指定一个group props.put(ConsumerConfig.GROUP_ID_CONFIG, "test"); //key序列化类 props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringDeserializer"); //value序列化类 props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringDeserializer"); Consumer<String, String> consumer = new KafkaConsumer<>(props); consumer.subscribe(Arrays.asList(TOPIC)); while (true) { //PART2:拉取消息 // 100毫秒超时时间 ConsumerRecords<String, String> records = consumer.poll(Duration.ofNanos(100)); //PART3:处理消息 for (ConsumerRecord<String, String> record : records) { System.out.println("offset = " + record.offset() + ";key = " + record.key() + "; value= " + record.value()); } //提交offset,消息就不会重复推送。 consumer.commitSync(); //同步提交,表示必须等到offset提交完毕,再去消费下一批数据。//consumer.commitAsync(); //异步提交,表示发送完提交offset请求后,就开始消费下一批数据了。不用等到Broker的确认。 } }}
整体来说,Consumer同样是分为三个步骤:
- 设置Consumer核心属性 :可选的属性都可以由ConsumerConfig类管理。在这个类中,同样对于大部分比较重要的属性,都配置了对应的DOC属性进行描述。同样BOOTSTRAP_SERVERS_CONFIG是必须设置的属性。
- 拉取消息:Kafka采用Consumer主动拉取消息的Pull模式。consumer主动从Broker上拉取一批感兴趣的消息。
- 处理消息,提交位点:消费者将消息拉取完成后,就可以交由业务自行处理对应的这一批消息了。只是消费者需要向Broker提交偏移量offset。如果不提交Offset,Broker会认为消费者端消息处理失败了,还会重复进行推送。
Kafka的客户端基本就是固定的按照这三个大的步骤运行。在具体使用过程中,最大的变数基本上就是给生产者和消费者的设定合适的属性。这些属性极大的影响了客户端程序的执行方式。
2、从客户端属性来梳理客户端工作机制
渔与鱼:Kafka的客户端API的重要目的就是想要简化客户端的使用方式,所以对于API的使用,尽量熟练就可以了。对于其他重要的属性,都可以通过源码中的描述去学习,并且可以设计一些场景去进行验证。其重点,是要逐步在脑海之中建立一个Message在Kafka集群中进行流转的基础模型。
其实Kafka的设计精髓,是在网络不稳定,服务也随时会崩溃的这些作死的复杂场景下,如何保证消息的高并发、高吞吐,那才是Kafka最为精妙的地方。但是要理解那些复杂的问题,都是需要建立在这个基础模型基础上的。
2.1、消费者分组消费机制
这是我们在使用kafka时,最为重要的一个机制,因此最先进行梳理。
在Consumer中,都需要指定一个GROUP_ID_CONFIG属性,这表示当前Consumer所属的消费者组。他的描述是这样的:
public static final String GROUP_ID_CONFIG = "group.id";public static final String GROUP_ID_DOC = "A unique string that identifies the consumer group this consumer belongs to. This property is required if the consumer uses either the group management functionality by using subscribe(topic)
or the Kafka-based offset management strategy.";
既然这里提到了kafka-based offset management strategy,那是不是也有非Kafka管理Offset的策略呢?
另外,还有一个相关的参数GROUP_INSTANCE_ID_CONFIG,可以给组成员设置一个固定的instanceId,这个参数通常可以用来减少Kafka不必要的rebalance。
从这段描述中看到,对于Consumer,如果需要在subcribe时使用组管理功能以及Kafka提供的offset管理策略,那就必须要配置GROUP_ID_CONFIG属性。这个分组消费机制简单描述就是这样的:
生产者往Topic下发消息时,会尽量均匀的将消息发送到Topic下的各个Partition当中。而这个消息,会向所有订阅了该Topic的消费者推送。推送时,每个ConsumerGroup中只会推送一份。也就是同一个消费者组中的多个消费者实例,只会共同消费一个消息副本。而不同消费者组之间,会重复消费消息副本。这就是消费者组的作用。
与之相关的还有Offset偏移量。这个偏移量表示每个消费者组在每个Partiton中已经消费处理的进度。在Kafka中,可以看到消费者组的Offset记录情况。
[oper@worker1 bin]$ ./kafka-consumer-groups.sh --bootstrap-server worker1:9092 --describe --group test