一、概述
此页面是 Kubernetes 的概述。
Kubernetes 是一个可移植、可扩展的开源平台,用于管理容器化的工作负载和服务,可促进声明式配置和自动化。 Kubernetes 拥有一个庞大且快速增长的生态,其服务、支持和工具的使用范围相当广泛。
Kubernetes这个名字源于希腊语,意为“舵手”或“飞行员”。k8s 这个缩写是因为 k 和 s 之间有八个字符的关系。 Google 在 2014 年开源了 Kubernetes 项目。 Kubernetes 建立在 Google 大规模运行生产工作负载十几年经验的基础上, 结合了社区中最优秀的想法和实践。
1、时光回溯
让我们回顾一下为何 Kubernetes 能够裨益四方。
传统部署时代:
早期,各个组织是在物理服务器上运行应用程序。 由于无法限制在物理服务器中运行的应用程序资源使用,因此会导致资源分配问题。 例如,如果在同一台物理服务器上运行多个应用程序, 则可能会出现一个应用程序占用大部分资源的情况,而导致其他应用程序的性能下降。 一种解决方案是将每个应用程序都运行在不同的物理服务器上, 但是当某个应用程序资源利用率不高时,剩余资源无法被分配给其他应用程序, 而且维护许多物理服务器的成本很高。
虚拟化部署时代:
因此,虚拟化技术被引入了。虚拟化技术允许你在单个物理服务器的 CPU 上运行多台虚拟机(VM)。 虚拟化能使应用程序在不同 VM 之间被彼此隔离,且能提供一定程度的安全性, 因为一个应用程序的信息不能被另一应用程序随意访问。
虚拟化技术能够更好地利用物理服务器的资源,并且因为可轻松地添加或更新应用程序, 而因此可以具有更高的可扩缩性,以及降低硬件成本等等的好处。 通过虚拟化,你可以将一组物理资源呈现为可丢弃的虚拟机集群。
每个 VM 是一台完整的计算机,在虚拟化硬件之上运行所有组件,包括其自己的操作系统。
容器部署时代:
容器类似于 VM,但是更宽松的隔离特性,使容器之间可以共享操作系统(OS)。 因此,容器比起 VM 被认为是更轻量级的。且与 VM 类似,每个容器都具有自己的文件系统、CPU、内存、进程空间等。 由于它们与基础架构分离,因此可以跨云和 OS 发行版本进行移植。
容器因具有许多优势而变得流行起来,例如:
- 敏捷应用程序的创建和部署:与使用 VM 镜像相比,提高了容器镜像创建的简便性和效率。
- 持续开发、集成和部署:通过快速简单的回滚(由于镜像不可变性), 提供可靠且频繁的容器镜像构建和部署。
- 关注开发与运维的分离:在构建、发布时创建应用程序容器镜像,而不是在部署时, 从而将应用程序与基础架构分离。
- 可观察性:不仅可以显示 OS 级别的信息和指标,还可以显示应用程序的运行状况和其他指标信号。
- 跨开发、测试和生产的环境一致性:在笔记本计算机上也可以和在云中运行一样的应用程序。
- 跨云和操作系统发行版本的可移植性:可在 Ubuntu、RHEL、CoreOS、本地、 Google Kubernetes Engine 和其他任何地方运行。
- 以应用程序为中心的管理:提高抽象级别,从在虚拟硬件上运行 OS 到使用逻辑资源在 OS 上运行应用程序。
- 松散耦合、分布式、弹性、解放的微服务:应用程序被分解成较小的独立部分, 并且可以动态部署和管理 – 而不是在一台大型单机上整体运行。
- 资源隔离:可预测的应用程序性能。
- 资源利用:高效率和高密度。
2、为什么需要 Kubernetes,它能做什么?
容器是打包和运行应用程序的好方式。在生产环境中, 你需要管理运行着应用程序的容器,并确保服务不会下线。 例如,如果一个容器发生故障,则你需要启动另一个容器。 如果此行为交由给系统处理,是不是会更容易一些?
这就是 Kubernetes 要来做的事情! Kubernetes 为你提供了一个可弹性运行分布式系统的框架。 Kubernetes 会满足你的扩展要求、故障转移你的应用、提供部署模式等。 例如,Kubernetes 可以轻松管理系统的 Canary (金丝雀) 部署。
Kubernetes 为你提供:
服务发现和负载均衡
Kubernetes 可以使用 DNS 名称或自己的 IP 地址来暴露容器。 如果进入容器的流量很大, Kubernetes 可以负载均衡并分配网络流量,从而使部署稳定。
存储编排
Kubernetes 允许你自动挂载你选择的存储系统,例如本地存储、公共云提供商等。
自动部署和回滚
你可以使用 Kubernetes 描述已部署容器的所需状态, 它可以以受控的速率将实际状态更改为期望状态。 例如,你可以自动化 Kubernetes 来为你的部署创建新容器, 删除现有容器并将它们的所有资源用于新容器。
自动完成装箱计算
你为 Kubernetes 提供许多节点组成的集群,在这个集群上运行容器化的任务。 你告诉 Kubernetes 每个容器需要多少 CPU 和内存 (RAM)。 Kubernetes 可以将这些容器按实际情况调度到你的节点上,以最佳方式利用你的资源。
自我修复
Kubernetes 将重新启动失败的容器、替换容器、杀死不响应用户定义的运行状况检查的容器, 并且在准备好服务之前不将其通告给客户端。
密钥与配置管理
Kubernetes 允许你存储和管理敏感信息,例如密码、OAuth 令牌和 SSH 密钥。 你可以在不重建容器镜像的情况下部署和更新密钥和应用程序配置,也无需在堆栈配置中暴露密钥。
3、Kubernetes 不是什么
Kubernetes 不是传统的、包罗万象的 PaaS(平台即服务)系统。 由于 Kubernetes 是在容器级别运行,而非在硬件级别,它提供了 PaaS 产品共有的一些普遍适用的功能, 例如部署、扩展、负载均衡,允许用户集成他们的日志记录、监控和警报方案。 但是,Kubernetes 不是单体式(monolithic)系统,那些默认解决方案都是可选、可插拔的。 Kubernetes 为构建开发人员平台提供了基础,但是在重要的地方保留了用户选择权,能有更高的灵活性。
Kubernetes:
- 不限制支持的应用程序类型。 Kubernetes 旨在支持极其多种多样的工作负载,包括无状态、有状态和数据处理工作负载。 如果应用程序可以在容器中运行,那么它应该可以在 Kubernetes 上很好地运行。
- 不部署源代码,也不构建你的应用程序。 持续集成(CI)、交付和部署(CI/CD)工作流取决于组织的文化和偏好以及技术要求。
- 不提供应用程序级别的服务作为内置服务,例如中间件(例如消息中间件)、 数据处理框架(例如 Spark)、数据库(例如 MySQL)、缓存、集群存储系统 (例如 Ceph)。这样的组件可以在 Kubernetes 上运行,并且/或者可以由运行在 Kubernetes 上的应用程序通过可移植机制来访问。
- 不是日志记录、监视或警报的解决方案。 它集成了一些功能作为概念证明,并提供了收集和导出指标的机制。
- 不提供也不要求配置用的语言、系统(例如 jsonnet),它提供了声明性 API, 该声明性 API 可以由任意形式的声明性规范所构成。
- 不提供也不采用任何全面的机器配置、维护、管理或自我修复系统。
- 此外,Kubernetes 不仅仅是一个编排系统,实际上它消除了编排的需要。 编排的技术定义是执行已定义的工作流程:首先执行 A,然后执行 B,再执行 C。 而 Kubernetes 包含了一组独立可组合的控制过程,可以持续地将当前状态驱动到所提供的预期状态。 你不需要在乎如何从 A 移动到 C,也不需要集中控制,这使得系统更易于使用且功能更强大、 系统更健壮,更为弹性和可扩展。
二、Kubernetes 架构
1、节点
Kubernetes 通过将容器放入在节点(Node)上运行的 Pod 中来执行你的工作负载。 节点可以是一个虚拟机或者物理机器,取决于所在的集群配置。 每个节点包含运行 Pod 所需的服务; 这些节点由控制面负责管理。
通常集群中会有若干个节点;而在一个学习所用或者资源受限的环境中,你的集群中也可能只有一个节点。
节点上的组件包括 kubelet、 容器运行时以及 kube-proxy。
2、管理
向 API 服务器添加节点的方式主要有两种:
- 节点上的 kubelet 向控制面执行自注册;
- 你(或者别的什么人)手动添加一个 Node 对象。
在你创建了 Node 对象或者节点上的 kubelet 执行了自注册操作之后,控制面会检查新的 Node 对象是否合法。 例如,如果你尝试使用下面的 JSON 对象来创建 Node 对象:
{"kind": "Node","apiVersion": "v1","metadata": {"name": "10.240.79.157","labels": {"name": "my-first-k8s-node"}}}
Kubernetes 会在内部创建一个 Node 对象作为节点的表示。Kubernetes 检查kubelet
向 API 服务器注册节点时使用的metadata.name
字段是否匹配。 如果节点是健康的(即所有必要的服务都在运行中),则该节点可以用来运行 Pod。 否则,直到该节点变为健康之前,所有的集群活动都会忽略该节点。
说明:
Kubernetes 会一直保存着非法节点对应的对象,并持续检查该节点是否已经变得健康。
你,或者某个控制器必须显式地删除该 Node 对象以停止健康检查操作。
Node 对象的名称必须是合法的 DNS 子域名。
节点名称唯一性
节点的名称用来标识 Node 对象。 没有两个 Node 可以同时使用相同的名称。 Kubernetes 还假定名字相同的资源是同一个对象。 就 Node 而言,隐式假定使用相同名称的实例会具有相同的状态(例如网络配置、根磁盘内容) 和类似节点标签这类属性。这可能在节点被更改但其名称未变时导致系统状态不一致。 如果某个 Node 需要被替换或者大量变更,需要从 API 服务器移除现有的 Node 对象, 之后再在更新之后重新将其加入。
节点自注册
当 kubelet 标志 –register-node 为 true(默认)时,它会尝试向 API 服务注册自己。 这是首选模式,被绝大多数发行版选用。
对于自注册模式,kubelet 使用下列参数启动:
- –kubeconfig – 用于向 API 服务器执行身份认证所用的凭据的路径。
- –cloud-provider – 与某云驱动 进行通信以读取与自身相关的元数据的方式。
- –register-node – 自动向 API 服务注册。
- –register-with-taints – 使用所给的污点列表 (逗号分隔的 =:)注册节点。当 register-node 为 false 时无效。
- –node-ip – 可选的以英文逗号隔开的节点 IP 地址列表。你只能为每个地址簇指定一个地址。 例如在单协议栈 IPv4 集群中,需要将此值设置为 kubelet 应使用的节点 IPv4 地址。 参阅配置 IPv4/IPv6 双协议栈了解运行双协议栈集群的详情。如果你未提供这个参数,kubelet 将使用节点默认的 IPv4 地址(如果有); 如果节点没有 IPv4 地址,则 kubelet 使用节点的默认 IPv6 地址。
- –node-labels – 在集群中注册节点时要添加的标签。 (参见 NodeRestriction 准入控制插件所实施的标签限制)。
- –node-status-update-frequency – 指定 kubelet 向 API 服务器发送其节点状态的频率。
当 Node 鉴权模式和 NodeRestriction 准入插件被启用后, 仅授权 kubelet 创建/修改自己的 Node 资源。
说明:
正如节点名称唯一性一节所述,当 Node 的配置需要被更新时, 一种好的做法是重新向 API 服务器注册该节点。例如,如果 kubelet 重启时其 –node-labels 是新的值集,但同一个 Node 名称已经被使用,则所作变更不会起作用, 因为节点标签是在 Node 注册时完成的。
如果在 kubelet 重启期间 Node 配置发生了变化,已经被调度到某 Node 上的 Pod 可能会出现行为不正常或者出现其他问题,例如,已经运行的 Pod 可能通过污点机制设置了与 Node 上新设置的标签相排斥的规则,也有一些其他 Pod, 本来与此 Pod 之间存在不兼容的问题,也会因为新的标签设置而被调到同一节点。 节点重新注册操作可以确保节点上所有 Pod 都被排空并被正确地重新调度。
手动节点管理
你可以使用 kubectl 来创建和修改 Node 对象。
如果你希望手动创建节点对象时,请设置 kubelet 标志 –register-node=false。
你可以修改 Node 对象(忽略 –register-node 设置)。 例如,你可以修改节点上的标签或并标记其为不可调度。
你可以结合使用 Node 上的标签和 Pod 上的选择算符来控制调度。 例如,你可以限制某 Pod 只能在符合要求的节点子集上运行。
如果标记节点为不可调度(unschedulable),将阻止新 Pod 调度到该 Node 之上, 但不会影响任何已经在其上的 Pod。 这是重启节点或者执行其他维护操作之前的一个有用的准备步骤。
要标记一个 Node 为不可调度,执行以下命令:
kubectl cordon $NODENAME
3、节点状态
一个节点的状态包含以下信息:
- 地址(Addresses)
- 状况(Condition)
- 容量与可分配(Capacity)
- 信息(Info)
你可以使用 kubectl 来查看节点状态和其他细节信息:
kubectl describe node
地址
这些字段的用法取决于你的云服务商或者物理机配置。
- HostName:由节点的内核报告。可以通过 kubelet 的
--hostname-override
参数覆盖。 - ExternalIP:通常是节点的可外部路由(从集群外可访问)的 IP 地址。
- InternalIP:通常是节点的仅可在集群内部路由的 IP 地址。
状况
conditions
字段描述了所有Running
节点的状况。状况的示例包括:
节点状况 | 描述 |
---|---|
Ready | 如节点是健康的并已经准备好接收 Pod 则为True ;False 表示节点不健康而且不能接收 Pod;Unknown 表示节点控制器在最近node-monitor-grace-period 期间(默认 40 秒)没有收到节点的消息 |
DiskPressure | True 表示节点存在磁盘空间压力,即磁盘可用量低, 否则为False |
MemoryPressure | True 表示节点存在内存压力,即节点内存可用量低,否则为False |
PIDPressure | True 表示节点存在进程压力,即节点上进程过多;否则为False |
NetworkUnavailable | True 表示节点网络配置不正确;否则为False |
说明:
如果使用命令行工具来打印已保护(Cordoned)节点的细节,其中的 Condition 字段可能包括SchedulingDisabled
。SchedulingDisabled
不是 Kubernetes API 中定义的 Condition,被保护起来的节点在其规约中被标记为不可调度(Unschedulable)。
在 Kubernetes API 中,节点的状况表示节点资源中.status
的一部分。 例如,以下 JSON 结构描述了一个健康节点:
"conditions": [{"type": "Ready","status": "True","reason": "KubeletReady","message": "kubelet is posting ready status","lastHeartbeatTime": "2019-06-05T18:38:35Z","lastTransitionTime": "2019-06-05T11:41:27Z"}]
当节点上出现问题时,Kubernetes 控制面会自动创建与影响节点的状况对应的 污点。 例如当 Ready 状况的 status 保持 Unknown 或 False 的时间长于 kube-controller-manager 的 NodeMonitorGracePeriod(默认为 40 秒)时, 会造成 Unknown 状态下为节点添加 node.kubernetes.io/unreachable 污点或在 False 状态下为节点添加 node.kubernetes.io/not-ready 污点。
这些污点会影响悬决的 Pod,因为调度器在将 Pod 分配到 Node 时会考虑 Node 的污点。 已调度到节点的当前 Pod 可能会由于施加的 NoExecute 污点被驱逐。 Pod 还可以设置容忍度, 使得这些 Pod 仍然能够调度到且继续运行在设置了特定污点的 Node 上。
容量(Capacity)与可分配(Allocatable)
这两个值描述节点上的可用资源:CPU、内存和可以调度到节点上的 Pod 的个数上限。
capacity块中的字段标示节点拥有的资源总量。allocatable块指示节点上可供普通 Pod 消耗的资源量。
信息(Info)
Info 指的是节点的一般信息,如内核版本、Kubernetes 版本(kubelet
和kube-proxy
版本)、 容器运行时详细信息,以及节点使用的操作系统。kubelet
从节点收集这些信息并将其发布到 Kubernetes API。
4、心跳
Kubernetes 节点发送的心跳帮助你的集群确定每个节点的可用性,并在检测到故障时采取行动。
对于节点,有两种形式的心跳:
- 更新节点的 .status
- kube-node-lease 名字空间中的 Lease(租约)对象。 每个节点都有一个关联的 Lease 对象。
与 Node 的.status
更新相比,Lease 是一种轻量级资源。 使用 Lease 来表达心跳在大型集群中可以减少这些更新对性能的影响。
kubelet 负责创建和更新节点的.status
,以及更新它们对应的 Lease。
- 当节点状态发生变化时,或者在配置的时间间隔内没有更新事件时,kubelet 会更新
.status
。.status
更新的默认间隔为 5 分钟(比节点不可达事件的 40 秒默认超时时间长很多)。 kubelet
会创建并每 10 秒(默认更新间隔时间)更新 Lease 对象。 Lease 的更新独立于 Node 的.status
更新而发生。 如果 Lease 的更新操作失败,kubelet 会采用指数回退机制,从 200 毫秒开始重试, 最长重试间隔为 7 秒钟。
5、节点控制器
节点控制器是 Kubernetes 控制面组件, 管理节点的方方面面。
节点控制器在节点的生命周期中扮演多个角色。 第一个是当节点注册时为它分配一个 CIDR 区段(如果启用了 CIDR 分配)。
第二个是保持节点控制器内的节点列表与云服务商所提供的可用机器列表同步。 如果在云环境下运行,只要某节点不健康,节点控制器就会询问云服务是否节点的虚拟机仍可用。 如果不可用,节点控制器会将该节点从它的节点列表删除。
第三个是监控节点的健康状况。节点控制器负责:
- 在节点不可达的情况下,在 Node 的 .status 中更新 Ready 状况。 在这种情况下,节点控制器将 NodeReady 状况更新为 Unknown。
- 如果节点仍然无法访问:对于不可达节点上的所有 Pod 触发 API 发起的逐出操作。 默认情况下,节点控制器在将节点标记为 Unknown 后等待 5 分钟提交第一个驱逐请求。
默认情况下,节点控制器每 5 秒检查一次节点状态,可以使用 kube-controller-manager 组件上的 –node-monitor-period 参数来配置周期。
逐出速率限制
大部分情况下,节点控制器把逐出速率限制在每秒 –node-eviction-rate 个(默认为 0.1)。 这表示它每 10 秒钟内至多从一个节点驱逐 Pod。
当一个可用区域(Availability Zone)中的节点变为不健康时,节点的驱逐行为将发生改变。 节点控制器会同时检查可用区域中不健康(Ready 状况为 Unknown 或 False) 的节点的百分比:
- 如果不健康节点的比例超过 –unhealthy-zone-threshold (默认为 0.55), 驱逐速率将会降低。
- 如果集群较小(意即小于等于 –large-cluster-size-threshold 个节点 – 默认为 50), 驱逐操作将会停止。
- 否则驱逐速率将降为每秒 –secondary-node-eviction-rate 个(默认为 0.01)。
在逐个可用区域中实施这些策略的原因是, 当一个可用区域可能从控制面脱离时其它可用区域可能仍然保持连接。 如果你的集群没有跨越云服务商的多个可用区域,那(整个集群)就只有一个可用区域。
跨多个可用区域部署你的节点的一个关键原因是当某个可用区域整体出现故障时, 工作负载可以转移到健康的可用区域。 因此,如果一个可用区域中的所有节点都不健康时,节点控制器会以正常的速率 –node-eviction-rate 进行驱逐操作。 在所有的可用区域都不健康(也即集群中没有健康节点)的极端情况下, 节点控制器将假设控制面与节点间的连接出了某些问题,它将停止所有驱逐动作 (如果故障后部分节点重新连接,节点控制器会从剩下不健康或者不可达节点中驱逐 Pod)。
节点控制器还负责驱逐运行在拥有 NoExecute 污点的节点上的 Pod, 除非这些 Pod 能够容忍此污点。 节点控制器还负责根据节点故障(例如节点不可访问或没有就绪) 为其添加污点。 这意味着调度器不会将 Pod 调度到不健康的节点上。
资源容量跟踪
Node 对象会跟踪节点上资源的容量(例如可用内存和 CPU 数量)。 通过自注册机制生成的 Node 对象会在注册期间报告自身容量。 如果你手动添加了 Node, 你就需要在添加节点时手动设置节点容量。
Kubernetes 调度器 保证节点上有足够的资源供其上的所有 Pod 使用。 它会检查节点上所有容器的请求的总和不会超过节点的容量。 总的请求包括由 kubelet 启动的所有容器,但不包括由容器运行时直接启动的容器, 也不包括不受 kubelet 控制的其他进
6、节点拓扑
特性状态: Kubernetes v1.18 [beta]
如果启用了 TopologyManager 特性门控, kubelet 可以在作出资源分配决策时使用拓扑提示
7、节点体面关闭
特性状态:Kubernetes v1.21 [beta]
kubelet 会尝试检测节点系统关闭事件并终止在节点上运行的所有 Pod。
在节点终止期间,kubelet 保证 Pod 遵从常规的 Pod 终止流程, 且不接受新的 Pod(即使这些 Pod 已经绑定到该节点)。
节点体面关闭特性依赖于 systemd,因为它要利用 systemd 抑制器锁机制, 在给定的期限内延迟节点关闭。
节点体面关闭特性受 GracefulNodeShutdown 特性门控控制, 在 1.21 版本中是默认启用的。
注意,默认情况下,下面描述的两个配置选项,shutdownGracePeriod 和 shutdownGracePeriodCriticalPods 都是被设置为 0 的,因此不会激活节点体面关闭功能。 要激活此功能特性,这两个 kubelet 配置选项要适当配置,并设置为非零值。
一旦 systemd 检测到或通知节点关闭,kubelet 就会在节点上设置一个 NotReady 状况,并将 reason 设置为 “node is shutting down”。 kube-scheduler 会重视此状况,不将 Pod 调度到受影响的节点上; 其他第三方调度程序也应当遵循相同的逻辑。这意味着新的 Pod 不会被调度到该节点上, 因此不会有新 Pod 启动。
如果检测到节点关闭过程正在进行中,kubelet 也会在 PodAdmission 阶段拒绝 Pod,即使是该 Pod 带有 node.kubernetes.io/not-ready:NoSchedule 的容忍度。
同时,当 kubelet 通过 API 在其 Node 上设置该状况时,kubelet 也开始终止在本地运行的所有 Pod。
在体面关闭节点过程中,kubelet 分两个阶段来终止 Pod:
- 终止在节点上运行的常规 Pod。
- 终止在节点上运行的关键 Pod。
节点体面关闭的特性对应两个KubeletConfiguration选项:
shutdownGracePeriod
:- 指定节点应延迟关闭的总持续时间。此时间是 Pod 体面终止的时间总和,不区分常规 Pod 还是关键 Pod。
shutdownGracePeriodCriticalPods
:- 在节点关闭期间指定用于终止关键 Pod的持续时间。该值应小于
shutdownGracePeriod
。
- 在节点关闭期间指定用于终止关键 Pod的持续时间。该值应小于
说明:
在某些情况下,节点终止过程会被系统取消(或者可能由管理员手动取消)。 无论哪种情况下,节点都将返回到
Ready
状态。然而,已经开始终止进程的 Pod 将不会被 kubelet 恢复,需要被重新调度。
例如,如果设置了 shutdownGracePeriod=30s 和 shutdownGracePeriodCriticalPods=10s, 则 kubelet 将延迟 30 秒关闭节点。 在关闭期间,将保留前 20(30 – 10)秒用于体面终止常规 Pod, 而保留最后 10 秒用于终止关键 Pod。
说明:
当 Pod 在正常节点关闭期间被驱逐时,它们会被标记为关闭。 运行
kubectl get pods
时,被驱逐的 Pod 的状态显示为Terminated
。 并且kubectl describe pod
表示 Pod 因节点关闭而被驱逐:Reason: TerminatedMessage:Pod was terminated in response to imminent node shutdown.
基于 Pod 优先级的节点体面关闭
特性状态:Kubernetes v1.23 [alpha]
为了在节点体面关闭期间提供更多的灵活性,尤其是处理关闭期间的 Pod 排序问题, 节点体面关闭机制能够关注 Pod 的 PriorityClass 设置,前提是你已经在集群中启用了此功能特性。 此功能特性允许集群管理员基于 Pod 的优先级类(Priority Class)显式地定义节点体面关闭期间 Pod 的处理顺序。
前文所述的节点体面关闭特性能够分两个阶段关闭 Pod, 首先关闭的是非关键的 Pod,之后再处理关键 Pod。 如果需要显式地以更细粒度定义关闭期间 Pod 的处理顺序,需要一定的灵活度, 这时可以使用基于 Pod 优先级的体面关闭机制。
当节点体面关闭能够处理 Pod 优先级时,节点体面关闭的处理可以分为多个阶段, 每个阶段关闭特定优先级类的 Pod。kubelet 可以被配置为按确切的阶段处理 Pod, 且每个阶段可以独立设置关闭时间。
假设集群中存在以下自定义的 Pod优先级类。
Pod 优先级类名称 | Pod 优先级类数值 |
---|---|
custom-class-a | 100000 |
custom-class-b | 10000 |
custom-class-c | 1000 |
regular/unset | 0 |
在kubelet 配置中,shutdownGracePeriodByPodPriority
可能看起来是这样:
Pod 优先级类数值 | 关闭期限 |
---|---|
100000 | 10 秒 |
10000 | 180 秒 |
1000 | 120 秒 |
0 | 60 秒 |
对应的 kubelet 配置 YAML 将会是:
shutdownGracePeriodByPodPriority:- priority: 100000shutdownGracePeriodSeconds: 10- priority: 10000shutdownGracePeriodSeconds: 180- priority: 1000shutdownGracePeriodSeconds: 120- priority: 0shutdownGracePeriodSeconds: 60
上面的表格表明,所有priority
值大于等于 100000 的 Pod 会得到 10 秒钟期限停止, 所有priority
值介于 10000 和 100000 之间的 Pod 会得到 180 秒钟期限停止, 所有priority
值介于 1000 和 10000 之间的 Pod 会得到 120 秒钟期限停止, 所有其他 Pod 将获得 60 秒的时间停止。
用户不需要为所有的优先级类都设置数值。例如,你也可以使用下面这种配置:
Pod 优先级类数值 | 关闭期限 |
---|---|
100000 | 300 秒 |
1000 | 120 秒 |
0 | 60 秒 |
在上面这个场景中,优先级类为custom-class-b
的 Pod 会与优先级类为custom-class-c
的 Pod 在关闭时按相同期限处理。
如果在特定的范围内不存在 Pod,则 kubelet 不会等待对应优先级范围的 Pod。 kubelet 会直接跳到下一个优先级数值范围进行处理。
如果此功能特性被启用,但没有提供配置数据,则不会出现排序操作。
使用此功能特性需要启用 GracefulNodeShutdownBasedOnPodPriority 特性门控, 并将 kubelet 配置 中的 shutdownGracePeriodByPodPriority 设置为期望的配置, 其中包含 Pod 的优先级类数值以及对应的关闭期限。
说明:
在节点体面关闭期间考虑 Pod 优先级的能力是作为 Kubernetes v1.23 中的 Alpha 功能引入的。 在 Kubernetes 1.27 中该功能是 Beta 版,默认启用。
kubelet 子系统中会生成graceful_shutdown_start_time_seconds
和graceful_shutdown_end_time_seconds
度量指标以便监视节点关闭行为。
节点非体面关闭
特性状态:Kubernetes v1.26 [beta]
节点关闭的操作可能无法被 kubelet 的节点关闭管理器检测到, 是因为该命令不会触发 kubelet 所使用的抑制锁定机制,或者是因为用户错误的原因, 即 ShutdownGracePeriod 和 ShutdownGracePeriodCriticalPod 配置不正确。 请参考以上节点体面关闭部分了解更多详细信息。
当某节点关闭但 kubelet 的节点关闭管理器未检测到这一事件时, 在那个已关闭节点上、属于StatefulSet的 Pod 将停滞于终止状态,并且不能移动到新的运行节点上。 这是因为已关闭节点上的 kubelet 已不存在,亦无法删除 Pod, 因此 StatefulSet 无法创建同名的新 Pod。 如果 Pod 使用了卷,则 VolumeAttachments 不会从原来的已关闭节点上删除, 因此这些 Pod 所使用的卷也无法挂接到新的运行节点上。 所以,那些以 StatefulSet 形式运行的应用无法正常工作。 如果原来的已关闭节点被恢复,kubelet 将删除 Pod,新的 Pod 将被在不同的运行节点上创建。 如果原来的已关闭节点没有被恢复,那些在已关闭节点上的 Pod 将永远滞留在终止状态。
为了缓解上述情况,用户可以手动将具有NoExecute或NoSchedule效果的node.kubernetes.io/out-of-service污点添加到节点上,标记其无法提供服务。 如果在kube-controller-manager上启用了NodeOutOfServiceVolumeDetach特性门控, 并且节点被通过污点标记为无法提供服务,如果节点 Pod 上没有设置对应的容忍度, 那么这样的 Pod 将被强制删除,并且该在节点上被终止的 Pod 将立即进行卷分离操作。 这样就允许那些在无法提供服务节点上的 Pod 能在其他节点上快速恢复。
在非体面关闭期间,Pod 分两个阶段终止:
- 强制删除没有匹配的
out-of-service
容忍度的 Pod。 - 立即对此类 Pod 执行分离卷操作。
说明:
- 在添加
node.kubernetes.io/out-of-service
污点之前, 应该验证节点已经处于关闭或断电状态(而不是在重新启动中)。 - 将 Pod 移动到新节点后,用户需要手动移除停止服务的污点, 并且用户要检查关闭节点是否已恢复,因为该用户是最初添加污点的用户。
交换内存管理
特性状态:Kubernetes v1.22 [alpha]
在 Kubernetes 1.22 之前,节点不支持使用交换内存,并且默认情况下, 如果在节点上检测到交换内存配置,kubelet 将无法启动。 在 1.22 以后,可以逐个节点地启用交换内存支持。
要在节点上启用交换内存,必须启用 kubelet 的NodeSwap
特性门控, 同时使用--fail-swap-on
命令行参数或者将failSwapOn
配置设置为 false。
警告:
当内存交换功能被启用后,Kubernetes 数据(如写入 tmpfs 的 Secret 对象的内容)可以被交换到磁盘。
用户还可以选择配置memorySwap.swapBehavior
以指定节点使用交换内存的方式。例如:
memorySwap:swapBehavior: LimitedSwap
可用的swapBehavior
的配置选项有:
LimitedSwap
:Kubernetes 工作负载的交换内存会受限制。 不受 Kubernetes 管理的节点上的工作负载仍然可以交换。UnlimitedSwap
:Kubernetes 工作负载可以使用尽可能多的交换内存请求, 一直到达到系统限制为止。
如果启用了特性门控但是未指定memorySwap
的配置,默认情况下 kubelet 将使用LimitedSwap
设置。
LimitedSwap
这种设置的行为取决于节点运行的是 v1 还是 v2 的控制组(也就是cgroups
):
- cgroupsv1:Kubernetes 工作负载可以使用内存和交换,上限为 Pod 的内存限制值(如果设置了的话)。
- cgroupsv2:Kubernetes 工作负载不能使用交换内存。