[ 注意力机制 ] 经典网络模型3——ECANet 详解与复现

Author :Horizon Max

编程技巧篇:各种操作小结

机器视觉篇:会变魔术 OpenCV

深度学习篇:简单入门 PyTorch

神经网络篇:经典网络模型

算法篇:再忙也别忘了 LeetCode

[ 注意力机制 ] 经典网络模型3——ECA-Net 详解与复现

  • Efficient Channel Attention Module
  • ECA-Net 详解
    • 背景知识
    • 论文贡献
    • ECA Module
      • ECA-Net 推理过程
      • ECA-Net 应用对比
  • ECA-Net 复现

Efficient Channel Attention Module

Efficient Channel Attention Module 简称 ECA,2020年 Qilong Wang等人提出的一种 高效通道注意力(ECA)模块

提出了一种 不降维的局部跨通道交互策略 ,有效避免了降维对于通道注意力学习效果的影响 ;

该模块只涉及少数几个 参数,但具有明显的 效果增益 ;

适当的 跨通道交互 可以在保持 性能 的同时 显著降低模型的复杂性

图片[1] - [ 注意力机制 ] 经典网络模型3——ECANet 详解与复现 - MaxSSL

论文地址:ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks

ECA-Net 详解

背景知识

深度卷积神经网络(CNN)在计算机视觉领域得到了广泛的应用,在 图像分类目标检测语义分割 等方面取得了很大的进展 ;

从具有开创性的 AlexNet 提出以来,研究人员不断的探索提升 CNN 的性能 ;
近年来,SENet 将信息通道注意力引入卷积块引起了人们的极大兴趣,显示出极大的性能改进潜力;
后来研究通过捕获更复杂的 通道依赖性 或 结合额外的 空间注意 来改进SE块 ;
但随着模型 精度 越高,复杂度 越高,计算量 也随之增大 ,计算成本 高昂 ;

研究表明,SENet采用的 降维操作 会对通道注意力的预测产生 负面影响,且获取依赖关系效率低且不必要 ;
基于此,提出了一种针对CNN的高效通道注意力(ECA)模块,避免了降维,有效地实现了 跨通道交互

Efficient Channel Attention module

图片[2] - [ 注意力机制 ] 经典网络模型3——ECANet 详解与复现 - MaxSSL

特点:
(1)通过大小为 k 的快速一维卷积实现,其中核大小k表示 局部跨通道交互 的覆盖范围,即有多少领域参与了一个通道的注意预测 ;
(2)为了避免通过交叉验证手动调整 k,开发了一种 自适应方法 确定 k,其中跨通道交互的覆盖范围 (即核大小k) 与通道维度成比例 ;

论文贡献

(1)分析了SENet,并通过实证证明了 避免降维 和适当的 跨通道交互 对学习高效的通道注意力的重要性;
(2)开发了一种用于CNN的 极轻量级通道注意力模块 ,该模块对模型复杂度的增加很小,但改进明显 ;
(3)在ImageNet-1K和MS COCO上的实验结果表明,ECANet 在获得极具竞争力的性能的同时,具有 较低的模型复杂度

ECA Module

注意力模块的开发 大致可以分为两个方向:

(1)增强特征聚合;
(2)通道与空间注意的结合 ;

图片[3] - [ 注意力机制 ] 经典网络模型3——ECANet 详解与复现 - MaxSSL

左图:Residual Module 右图:ECA-Residual Module

ECA-Net 推理过程

对于不降维的聚合特征 y ∈ RC,可以学习通道注意 :
图片[4] - [ 注意力机制 ] 经典网络模型3——ECANet 详解与复现 - MaxSSL
W 为 C x C 的参数矩阵 ;
图片[5] - [ 注意力机制 ] 经典网络模型3——ECANet 详解与复现 - MaxSSL
Wvar2 是一个对角矩阵,包含C个参数 ;
Wvar3 是一个完整的矩阵,包含 C×C 的参数 ;
关键的区别在于:SE-var3考虑了跨通道交互,而SE-var2没有考虑,因此SE-V ar3的性能更好 ;

ECA-Net 中,探索了另一种获取 局部跨通道交互 的方法,以保证效率和有效性,使用一个 波段矩阵Wk 来学习通道注意力:

图片[6] - [ 注意力机制 ] 经典网络模型3——ECANet 详解与复现 - MaxSSL

图片[7] - [ 注意力机制 ] 经典网络模型3——ECANet 详解与复现 - MaxSSL

其中,C1D 表示一维卷积 ;

图片[8] - [ 注意力机制 ] 经典网络模型3——ECANet 详解与复现 - MaxSSL

总体来说:

ECA模块使用不降维的GAP聚合卷积特征后,首先自适应确定核大小k,然后进行一维卷积,再进行 Sigmoid 函数学习 channel attention

ECA-Net 应用对比

最后,分别使用 ResNetResNet+SENetResNet+CBAMResNet+ECANet 进行实验得到 模型参数量-准确率 结果 :

图片[9] - [ 注意力机制 ] 经典网络模型3——ECANet 详解与复现 - MaxSSL

实验表明 ECANet 性能超越了 SENet 和 CBAM

ECA-Net 复现

这里实现的是 ECA-ResNet 系列网络 :

# Here is the code :import torchimport torch.nn as nnimport torch.nn.functional as Ffrom torchinfo import summaryimport mathclass EfficientChannelAttention(nn.Module): # Efficient Channel Attention moduledef __init__(self, c, b=1, gamma=2):super(EfficientChannelAttention, self).__init__()t = int(abs((math.log(c, 2) + b) / gamma))k = t if t % 2 else t + 1self.avg_pool = nn.AdaptiveAvgPool2d(1)self.conv1 = nn.Conv1d(1, 1, kernel_size=k, padding=int(k/2), bias=False)self.sigmoid = nn.Sigmoid()def forward(self, x):x = self.avg_pool(x)x = self.conv1(x.squeeze(-1).transpose(-1, -2)).transpose(-1, -2).unsqueeze(-1)out = self.sigmoid(x)return outclass BasicBlock(nn.Module):# 左侧的 residual block 结构(18-layer、34-layer)expansion = 1def __init__(self, in_planes, planes, stride=1):# 两层卷积 Conv2d + Shutcutssuper(BasicBlock, self).__init__()self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)self.bn1 = nn.BatchNorm2d(planes)self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)self.bn2 = nn.BatchNorm2d(planes)self.channel = EfficientChannelAttention(planes) # Efficient Channel Attention moduleself.shortcut = nn.Sequential()if stride != 1 or in_planes != self.expansion*planes:# Shutcuts用于构建 Conv Block 和 Identity Blockself.shortcut = nn.Sequential(nn.Conv2d(in_planes, self.expansion*planes,kernel_size=1, stride=stride, bias=False),nn.BatchNorm2d(self.expansion*planes))def forward(self, x):out = F.relu(self.bn1(self.conv1(x)))out = self.bn2(self.conv2(out))ECA_out = self.channel(out)out = out * ECA_outout += self.shortcut(x)out = F.relu(out)return outclass Bottleneck(nn.Module):# 右侧的 residual block 结构(50-layer、101-layer、152-layer)expansion = 4def __init__(self, in_planes, planes, stride=1):# 三层卷积 Conv2d + Shutcutssuper(Bottleneck, self).__init__()self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)self.bn1 = nn.BatchNorm2d(planes)self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)self.bn2 = nn.BatchNorm2d(planes)self.conv3 = nn.Conv2d(planes, self.expansion*planes, kernel_size=1, bias=False)self.bn3 = nn.BatchNorm2d(self.expansion*planes)self.channel = EfficientChannelAttention(self.expansion*planes) # Efficient Channel Attention moduleself.shortcut = nn.Sequential()if stride != 1 or in_planes != self.expansion*planes:# Shutcuts用于构建 Conv Block 和 Identity Blockself.shortcut = nn.Sequential(nn.Conv2d(in_planes, self.expansion*planes,kernel_size=1, stride=stride, bias=False),nn.BatchNorm2d(self.expansion*planes))def forward(self, x):out = F.relu(self.bn1(self.conv1(x)))out = F.relu(self.bn2(self.conv2(out)))out = self.bn3(self.conv3(out))ECA_out = self.channel(out)out = out * ECA_outout += self.shortcut(x)out = F.relu(out)return outclass ECA_ResNet(nn.Module):def __init__(self, block, num_blocks, num_classes=1000):super(ECA_ResNet, self).__init__()self.in_planes = 64self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)# conv1self.bn1 = nn.BatchNorm2d(64)self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1) # conv2_xself.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)# conv3_xself.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)# conv4_xself.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)# conv5_xself.avgpool = nn.AdaptiveAvgPool2d((1, 1))self.linear = nn.Linear(512 * block.expansion, num_classes)def _make_layer(self, block, planes, num_blocks, stride):strides = [stride] + [1]*(num_blocks-1)layers = []for stride in strides:layers.append(block(self.in_planes, planes, stride))self.in_planes = planes * block.expansionreturn nn.Sequential(*layers)def forward(self, x):x = F.relu(self.bn1(self.conv1(x)))x = self.layer1(x)x = self.layer2(x)x = self.layer3(x)x = self.layer4(x)x = self.avgpool(x)x = torch.flatten(x, 1)out = self.linear(x)return outdef ECA_ResNet18():return ECA_ResNet(BasicBlock, [2, 2, 2, 2])def ECA_ResNet34():return ECA_ResNet(BasicBlock, [3, 4, 6, 3])def ECA_ResNet50():return ECA_ResNet(Bottleneck, [3, 4, 6, 3])def ECA_ResNet101():return ECA_ResNet(Bottleneck, [3, 4, 23, 3])def ECA_ResNet152():return ECA_ResNet(Bottleneck, [3, 8, 36, 3])def test():net = ECA_ResNet50()y = net(torch.randn(1, 3, 224, 224))print(y.size())summary(net, (1, 3, 224, 224))if __name__ == '__main__':test()

输出结果:

torch.Size([1, 1000])====================================================================================================Layer (type:depth-idx) Output ShapeParam #====================================================================================================ECA_ResNet ----├─Conv2d: 1-1[1, 64, 224, 224] 1,728├─BatchNorm2d: 1-2 [1, 64, 224, 224] 128├─Sequential: 1-3[1, 256, 224, 224]--│└─Bottleneck: 2-1 [1, 256, 224, 224]--││└─Conv2d: 3-1[1, 64, 224, 224] 4,096││└─BatchNorm2d: 3-2 [1, 64, 224, 224] 128││└─Conv2d: 3-3[1, 64, 224, 224] 36,864││└─BatchNorm2d: 3-4 [1, 64, 224, 224] 128││└─Conv2d: 3-5[1, 256, 224, 224]16,384││└─BatchNorm2d: 3-6 [1, 256, 224, 224]512││└─EfficientChannelAttention: 3-7 [1, 256, 1, 1]5││└─Sequential: 3-8[1, 256, 224, 224]16,896│└─Bottleneck: 2-2 [1, 256, 224, 224]--││└─Conv2d: 3-9[1, 64, 224, 224] 16,384││└─BatchNorm2d: 3-10[1, 64, 224, 224] 128││└─Conv2d: 3-11 [1, 64, 224, 224] 36,864││└─BatchNorm2d: 3-12[1, 64, 224, 224] 128││└─Conv2d: 3-13 [1, 256, 224, 224]16,384││└─BatchNorm2d: 3-14[1, 256, 224, 224]512││└─EfficientChannelAttention: 3-15[1, 256, 1, 1]5││└─Sequential: 3-16 [1, 256, 224, 224]--│└─Bottleneck: 2-3 [1, 256, 224, 224]--││└─Conv2d: 3-17 [1, 64, 224, 224] 16,384││└─BatchNorm2d: 3-18[1, 64, 224, 224] 128││└─Conv2d: 3-19 [1, 64, 224, 224] 36,864││└─BatchNorm2d: 3-20[1, 64, 224, 224] 128││└─Conv2d: 3-21 [1, 256, 224, 224]16,384││└─BatchNorm2d: 3-22[1, 256, 224, 224]512││└─EfficientChannelAttention: 3-23[1, 256, 1, 1]5││└─Sequential: 3-24 [1, 256, 224, 224]--├─Sequential: 1-4[1, 512, 112, 112]--│└─Bottleneck: 2-4 [1, 512, 112, 112]--││└─Conv2d: 3-25 [1, 128, 224, 224]32,768││└─BatchNorm2d: 3-26[1, 128, 224, 224]256││└─Conv2d: 3-27 [1, 128, 112, 112]147,456││└─BatchNorm2d: 3-28[1, 128, 112, 112]256││└─Conv2d: 3-29 [1, 512, 112, 112]65,536││└─BatchNorm2d: 3-30[1, 512, 112, 112]1,024││└─EfficientChannelAttention: 3-31[1, 512, 1, 1]5││└─Sequential: 3-32 [1, 512, 112, 112]132,096│└─Bottleneck: 2-5 [1, 512, 112, 112]--││└─Conv2d: 3-33 [1, 128, 112, 112]65,536││└─BatchNorm2d: 3-34[1, 128, 112, 112]256││└─Conv2d: 3-35 [1, 128, 112, 112]147,456││└─BatchNorm2d: 3-36[1, 128, 112, 112]256││└─Conv2d: 3-37 [1, 512, 112, 112]65,536││└─BatchNorm2d: 3-38[1, 512, 112, 112]1,024││└─EfficientChannelAttention: 3-39[1, 512, 1, 1]5││└─Sequential: 3-40 [1, 512, 112, 112]--│└─Bottleneck: 2-6 [1, 512, 112, 112]--││└─Conv2d: 3-41 [1, 128, 112, 112]65,536││└─BatchNorm2d: 3-42[1, 128, 112, 112]256││└─Conv2d: 3-43 [1, 128, 112, 112]147,456││└─BatchNorm2d: 3-44[1, 128, 112, 112]256││└─Conv2d: 3-45 [1, 512, 112, 112]65,536││└─BatchNorm2d: 3-46[1, 512, 112, 112]1,024││└─EfficientChannelAttention: 3-47[1, 512, 1, 1]5││└─Sequential: 3-48 [1, 512, 112, 112]--│└─Bottleneck: 2-7 [1, 512, 112, 112]--││└─Conv2d: 3-49 [1, 128, 112, 112]65,536││└─BatchNorm2d: 3-50[1, 128, 112, 112]256││└─Conv2d: 3-51 [1, 128, 112, 112]147,456││└─BatchNorm2d: 3-52[1, 128, 112, 112]256││└─Conv2d: 3-53 [1, 512, 112, 112]65,536││└─BatchNorm2d: 3-54[1, 512, 112, 112]1,024││└─EfficientChannelAttention: 3-55[1, 512, 1, 1]5││└─Sequential: 3-56 [1, 512, 112, 112]--├─Sequential: 1-5[1, 1024, 56, 56] --│└─Bottleneck: 2-8 [1, 1024, 56, 56] --││└─Conv2d: 3-57 [1, 256, 112, 112]131,072││└─BatchNorm2d: 3-58[1, 256, 112, 112]512││└─Conv2d: 3-59 [1, 256, 56, 56]589,824││└─BatchNorm2d: 3-60[1, 256, 56, 56]512││└─Conv2d: 3-61 [1, 1024, 56, 56] 262,144││└─BatchNorm2d: 3-62[1, 1024, 56, 56] 2,048││└─EfficientChannelAttention: 3-63[1, 1024, 1, 1] 5││└─Sequential: 3-64 [1, 1024, 56, 56] 526,336│└─Bottleneck: 2-9 [1, 1024, 56, 56] --││└─Conv2d: 3-65 [1, 256, 56, 56]262,144││└─BatchNorm2d: 3-66[1, 256, 56, 56]512││└─Conv2d: 3-67 [1, 256, 56, 56]589,824││└─BatchNorm2d: 3-68[1, 256, 56, 56]512││└─Conv2d: 3-69 [1, 1024, 56, 56] 262,144││└─BatchNorm2d: 3-70[1, 1024, 56, 56] 2,048││└─EfficientChannelAttention: 3-71[1, 1024, 1, 1] 5││└─Sequential: 3-72 [1, 1024, 56, 56] --│└─Bottleneck: 2-10[1, 1024, 56, 56] --││└─Conv2d: 3-73 [1, 256, 56, 56]262,144││└─BatchNorm2d: 3-74[1, 256, 56, 56]512││└─Conv2d: 3-75 [1, 256, 56, 56]589,824││└─BatchNorm2d: 3-76[1, 256, 56, 56]512││└─Conv2d: 3-77 [1, 1024, 56, 56] 262,144││└─BatchNorm2d: 3-78[1, 1024, 56, 56] 2,048││└─EfficientChannelAttention: 3-79[1, 1024, 1, 1] 5││└─Sequential: 3-80 [1, 1024, 56, 56] --│└─Bottleneck: 2-11[1, 1024, 56, 56] --││└─Conv2d: 3-81 [1, 256, 56, 56]262,144││└─BatchNorm2d: 3-82[1, 256, 56, 56]512││└─Conv2d: 3-83 [1, 256, 56, 56]589,824││└─BatchNorm2d: 3-84[1, 256, 56, 56]512││└─Conv2d: 3-85 [1, 1024, 56, 56] 262,144││└─BatchNorm2d: 3-86[1, 1024, 56, 56] 2,048││└─EfficientChannelAttention: 3-87[1, 1024, 1, 1] 5││└─Sequential: 3-88 [1, 1024, 56, 56] --│└─Bottleneck: 2-12[1, 1024, 56, 56] --││└─Conv2d: 3-89 [1, 256, 56, 56]262,144││└─BatchNorm2d: 3-90[1, 256, 56, 56]512││└─Conv2d: 3-91 [1, 256, 56, 56]589,824││└─BatchNorm2d: 3-92[1, 256, 56, 56]512││└─Conv2d: 3-93 [1, 1024, 56, 56] 262,144││└─BatchNorm2d: 3-94[1, 1024, 56, 56] 2,048││└─EfficientChannelAttention: 3-95[1, 1024, 1, 1] 5││└─Sequential: 3-96 [1, 1024, 56, 56] --│└─Bottleneck: 2-13[1, 1024, 56, 56] --││└─Conv2d: 3-97 [1, 256, 56, 56]262,144││└─BatchNorm2d: 3-98[1, 256, 56, 56]512││└─Conv2d: 3-99 [1, 256, 56, 56]589,824││└─BatchNorm2d: 3-100 [1, 256, 56, 56]512││└─Conv2d: 3-101[1, 1024, 56, 56] 262,144││└─BatchNorm2d: 3-102 [1, 1024, 56, 56] 2,048││└─EfficientChannelAttention: 3-103 [1, 1024, 1, 1] 5││└─Sequential: 3-104[1, 1024, 56, 56] --├─Sequential: 1-6[1, 2048, 28, 28] --│└─Bottleneck: 2-14[1, 2048, 28, 28] --││└─Conv2d: 3-105[1, 512, 56, 56]524,288││└─BatchNorm2d: 3-106 [1, 512, 56, 56]1,024││└─Conv2d: 3-107[1, 512, 28, 28]2,359,296││└─BatchNorm2d: 3-108 [1, 512, 28, 28]1,024││└─Conv2d: 3-109[1, 2048, 28, 28] 1,048,576││└─BatchNorm2d: 3-110 [1, 2048, 28, 28] 4,096││└─EfficientChannelAttention: 3-111 [1, 2048, 1, 1] 7││└─Sequential: 3-112[1, 2048, 28, 28] 2,101,248│└─Bottleneck: 2-15[1, 2048, 28, 28] --││└─Conv2d: 3-113[1, 512, 28, 28]1,048,576││└─BatchNorm2d: 3-114 [1, 512, 28, 28]1,024││└─Conv2d: 3-115[1, 512, 28, 28]2,359,296││└─BatchNorm2d: 3-116 [1, 512, 28, 28]1,024││└─Conv2d: 3-117[1, 2048, 28, 28] 1,048,576││└─BatchNorm2d: 3-118 [1, 2048, 28, 28] 4,096││└─EfficientChannelAttention: 3-119 [1, 2048, 1, 1] 7││└─Sequential: 3-120[1, 2048, 28, 28] --│└─Bottleneck: 2-16[1, 2048, 28, 28] --││└─Conv2d: 3-121[1, 512, 28, 28]1,048,576││└─BatchNorm2d: 3-122 [1, 512, 28, 28]1,024││└─Conv2d: 3-123[1, 512, 28, 28]2,359,296││└─BatchNorm2d: 3-124 [1, 512, 28, 28]1,024││└─Conv2d: 3-125[1, 2048, 28, 28] 1,048,576││└─BatchNorm2d: 3-126 [1, 2048, 28, 28] 4,096││└─EfficientChannelAttention: 3-127 [1, 2048, 1, 1] 7││└─Sequential: 3-128[1, 2048, 28, 28] --├─AdaptiveAvgPool2d: 1-7 [1, 2048, 1, 1] --├─Linear: 1-8[1, 1000] 2,049,000====================================================================================================Total params: 25,549,438Trainable params: 25,549,438Non-trainable params: 0Total mult-adds (G): 63.59====================================================================================================Input size (MB): 0.60Forward/backward pass size (MB): 2691.17Params size (MB): 102.20Estimated Total Size (MB): 2793.97====================================================================================================
© 版权声明
THE END
喜欢就支持一下吧
点赞0 分享