Java8新特性详解


陈老老老板 说明:新的专栏,本专栏专门讲Java8新特性,把平时遇到的问题与Java8的写法进行总结,需要注意的地方都标红了,一起加油。
本文是介绍Java8新特性与常用方法(此篇只做大体介绍了解,之后会把重要的部分写在新的博客中)

图片[1] - Java8新特性详解 - MaxSSL

说明:在工作中发现Java8新特性的写法无处不在,必须了解学会才能看懂前辈写的代码,本篇对Java8新特性做了全面的总结。

一、接口内允许添加默认实现的方法

Java 8 允许我们通过 default 关键字对接口中定义的抽象方法提供一个默认的实现。

请看下面示例代码:

// 定义一个公式接口interface school{// 学习void study();// 做游戏default string play(String name) {return "我和"+ name + "一起做游戏";}}

在上面这个接口中,我们除了定义了一个抽象方法 study,还定义了一个带有默认实现的方法 play。 我们在实现这个接口时,可以只需要实现 study方法,默认方法 play可以直接调用即可,也就是说我们可以不必强制实现 sqrt 方法。

注:通过 default 关键字这个新特性,可以非常方便地对之前的接口做拓展,而此接口的实现类不必做任何改动,减少了耦合性。

School school = new School() {@Overridepublic void study() {system.out.println("学习中");}};

二、Lambda 表达式

在学习 Lambda 表达式之前,我们先来看一段老版本的示例代码,其对一个含有字符串的集合进行排序:

List<String> names = Arrays.asList("peter", "anna", "mike", "xenia");Collections.sort(names, new Comparator<String>() {@Overridepublic int compare(String a, String b) {return b.compareTo(a);}});

Collections 工具类提供了静态方法 sort 方法,入参是一个 List 集合,一个 Comparator 比较器,创建比较器对象要实现比较方式。以便对给定的 List 集合进行 排序。上面的示例代码创建了一个匿名内部类作为入参,这种类似的操作在我们日常的工作中随处可见。

Java 8 中不再推荐这种写法,而是推荐使用 Lambda 表达:

Collections.sort(names, (String a, String b) -> {return b.compareTo(a);});

上面这段代码变得简短很多而且易于阅读。但是我们还可以再精炼一点:

Collections.sort(names, (String a, String b) -> b.compareTo(a));

对于只包含一行方法的代码块,我们可以省略大括号,直接 return 关键代码即可。追求极致,我们还可以让它再短点:

names.sort((a, b) -> b.compareTo(a));

List 集合现在已经添加了 sort 方法。而且 Java 编译器能够根据类型推断机制判断出参数类型。
注:Lambda表达式在下一篇博客就会深入进行讲解,这个很重要。

三、函数式接口 Functional Interface

不是每个接口都可以缩写成 Lambda 表达式。只有那些函数式接口(Functional Interface)才能缩写成 Lambda 表示式。

函数式接口(Functional Interface)就是只包含一个抽象方法的声明。针对该接口类型的所有 Lambda 表达式都会与这个抽象方法匹配。

注:Java 8 中允许通过 defualt 关键字来为接口添加默认方法它是不算抽象方法的,因此,你可以毫无顾忌的添加默认方法,它并不违反函数式接口(Functional Interface)的定义。一旦你添加了第二个抽象方法,编译器会立刻抛出错误提示。

总结一下:只要接口中仅仅包含一个抽象方法,我们就可以将其改写为 Lambda 表达式。为了保证一个接口明确的被定义为一个函数式接口(Functional Interface),我们需要为该接口添加注解:@FunctionalInterface

示例代码:

@FunctionalInterfaceinterface Converter<F, T> {T convert(F from);}

示例代码2:

Converter<String, Integer> converter = (from) -> Integer.valueOf(from);Integer converted = converter.convert("123");System.out.println(converted);// 123

注:上面的示例代码,即使去掉 @FunctionalInterface 也是好使的,它仅仅是一种约束而已。
这里解释一下,lambda表达式就理解为一个接口的实现方法,然后但凡是调用这个方法,就会执行lambda中写好的实现方式,这样就很好理解了。

四、便捷的引用类的构造器及方法

便捷引用方法指的是,Java 8 中允许你通过 :: 关键字来引用类的方法或构造器。
这里用代码来演示,更进一步简便的调用方法方式,之后会进行深入详解。
这里先通过lambda进行简化,但是可以更加简化。

@FunctionalInterfaceinterface Converter<F, T> {T convert(F from);}Converter<String, Integer> converter = (from) -> Integer.valueOf(from);Integer converted = converter.convert("123");System.out.println(converted);// 123

上面这段代码,通过 Java 8 的新特性,进一步简化上面的代码:

Converter<String, Integer> converter = Integer::valueOf;Integer converted = converter.convert("123");System.out.println(converted); // 123

上面的代码简单的示例了如何引用静态方法,当然,除了静态方法,我们还可以引用普通方法:

class Something {String startsWith(String s) {return String.valueOf(s.charAt(0));}}Something something = new Something();Converter<String, String> converter = something::startsWith;String converted = converter.convert("Java");System.out.println(converted);// "J"

接下来,我们再来看看如何通过 :: 关键字来引用类的构造器。
首先,我们先来定义一个示例类,在类中声明两个构造器:

class Person {String firstName;String lastName;Person() {}Person(String firstName, String lastName) {this.firstName = firstName;this.lastName = lastName;}}

然后,我们再定义一个工厂接口,用来生成 Person 类:

// Person 工厂interface PersonFactory<P extends Person> {P create(String firstName, String lastName);}

我们可以通过 :: 关键字来引用 Person 类的构造器,来代替手动去实现这个工厂接口:

// 直接引用 Person 构造器PersonFactory<Person> personFactory = Person::new;Person person = personFactory.create("Peter", "Parker");

Person::new 这段代码,能够直接引用 Person 类的构造器。然后 Java 编译器能够根据上下文选中正确的构造器去实现 PersonFactory.create 方法。

五、Lambda 访问外部变量及接口默认方法

这里主要讲如何在 lambda 表达式中访问外部变量(包括:局部变量,成员变量,静态变量,接口的默认方法.),它与匿名内部类访问外部变量很相似。

1.访问局部变量

在 Lambda 表达式中,我们可以访问外部的 final 类型变量,如下面的示例代码:

// 转换器@FunctionalInterfaceinterface Converter<F, T> {T convert(F from);}final int num = 1;Converter<Integer, String> stringConverter =(from) -> String.valueOf(from + num);stringConverter.convert(2); // 3

与匿名内部类不同的是,我们不必显式声明 num 变量为 final 类型,下面这段代码同样有效:

int num = 1;Converter<Integer, String> stringConverter =(from) -> String.valueOf(from + num);stringConverter.convert(2); // 3

但是 num 变量必须为隐式的 final 类型,何为隐式的 final 呢?就是说到编译期为止,num 对象是不能被改变的,如下面这段代码,就不能被编译通过:

//会编译错误int num = 1;Converter<Integer, String> stringConverter =(from) -> String.valueOf(from + num);num = 3;

在 lambda 表达式内部改变 num 值同样编译不通过,需要注意, 比如下面的示例代码:

//会编译错误int num = 1;Converter<Integer, String> converter = (from) -> {String value = String.valueOf(from + num);num = 3;return value;};

2.访问成员变量和静态变量

在 Lambda 表达式中对成员变量和静态变量同样拥有读写权限:
代码示例如下:

@FunctionalInterfaceinterface Converter<F, T> {T convert(F from);}class Lambda4 {// 静态变量static int outerStaticNum;// 成员变量int outerNum;void testScopes() {Converter<Integer, String> stringConverter1 = (from) -> {// 对成员变量赋值outerNum = 23;return String.valueOf(from);};Converter<Integer, String> stringConverter2 = (from) -> {// 对静态变量赋值outerStaticNum = 72;return String.valueOf(from);};}}

3.访问接口的默认方法

@FunctionalInterfaceinterface Formula {// 计算double calculate(int a);// 求平方根default double sqrt(int a) {return Math.sqrt(a);}}

我们在接口中定义了一个带有默认实现的 sqrt 求平方根方法,在匿名内部类中我们可以很方便的访问此方法:

Formula formula = new Formula() {@Overridepublic double calculate(int a) {return sqrt(a * 100);}};

但是在 lambda 表达式中可不行,带有默认实现的接口方法,是不能在 lambda 表达式中访问的,这段代码将无法被编译通过。

Formula formula = (a) -> sqrt(a * 100);

4.内置的函数式接口

JDK 1.8 API 包含了很多内置的函数式接口。其中就包括我们在老版本中经常见到的 Comparator 和 Runnable,Java 8 为他们都添加了 @FunctionalInterface 注解,以用来支持 Lambda 表达式。

值得一提的是,除了 Comparator 和 Runnable 外,还有一些新的函数式接口,它们很多都借鉴于知名的 Google Guava 库。

(1)Predicate 断言

注:这个会之后展开详细讲解
Predicate 是一个可以指定入参类型,并返回 boolean 值的函数式接口。它内部提供了一些带有默认实现的方法,可以被用来组合一个复杂的逻辑判断(and, or, negate):

Predicate<String> predicate = (s) -> s.length() > 0;predicate.test("foo");// truepredicate.negate().test("foo"); // falsePredicate<Boolean> nonNull = Objects::nonNull;Predicate<Boolean> isNull = Objects::isNull;Predicate<String> isEmpty = String::isEmpty;Predicate<String> isNotEmpty = isEmpty.negate();

(2)Function

Function 函数式接口的作用是,我们可以为其提供一个原料,他给生产一个最终的产品。通过它提供的默认方法,组合,链行处理(compose, andThen):

Function<String, Integer> toInteger = Integer::valueOf;Function<String, String> backToString = toInteger.andThen(String::valueOf);backToString.apply("123"); // "123"

(3)Supplier 生产者

Supplier 与 Function 不同,==它不接受入参,直接为我们生产一个指定的结果,==有点像生产者模式:

class Person {String firstName;String lastName;Person() {}Person(String firstName, String lastName) {this.firstName = firstName;this.lastName = lastName;}}Supplier<Person> personSupplier = Person::new;personSupplier.get(); // new Person

(4)Consumer 消费者

对于 Consumer,我们需要提供入参,用来被消费,如下面这段示例代码:

class Person {String firstName;String lastName;Person() {}Person(String firstName, String lastName) {this.firstName = firstName;this.lastName = lastName;}}Consumer<Person> greeter = (p) -> System.out.println("Hello, " + p.firstName);greeter.accept(new Person("Luke", "Skywalker"));

(5)Comparator

Comparator 在 Java 8 之前是使用比较普遍的。Java 8 中除了将其升级成了函数式接口,还为它拓展了一些默认方法:

Comparator<Person> comparator = (p1, p2) -> p1.firstName.compareTo(p2.firstName);Person p1 = new Person("John", "Doe");Person p2 = new Person("Alice", "Wonderland");comparator.compare(p1, p2); // > 0comparator.reversed().compare(p1, p2);// < 0

(6)Optional

注:这个会之后展开详细讲解,Optional有很多常用的方法,十分实用。
首先,Optional 它不是一个函数式接口,设计它的目的是为了防止空指针异常(NullPointerException),要知道在 Java 编程中, 空指针异常可是臭名昭著的。

让我们来快速了解一下 Optional 要如何使用!你可以将 Optional 看做是包装对象(可能是 null, 也有可能非 null)的容器。当你定义了 一个方法,这个方法返回的对象可能是空,也有可能非空的时候,你就可以考虑用 Optional 来包装它,这也是在 Java 8 被推荐使用的做法。

Optional<String> optional = Optional.of("bam");optional.isPresent(); // trueoptional.get(); // "bam"optional.orElse("fallback");// "bam"optional.ifPresent((s) -> System.out.println(s.charAt(0))); // "b"

六、Stream 流

Stream 流简单来说,我们可以使用 java.util.Stream 对一个包含一个或多个元素的集合做各种操作。这些操作可能是 中间操作 亦或是 终端操作。 终端操作会返回一个结果,而中间操作会返回一个 Stream 流

注:只能对实现了 java.util.Collection 接口的类做流的操作。Map 不支持Stream 流。
Stream 流支持同步执行,也支持并发执行。

1.Filter 过滤

首先,我们创建一个 List 集合:

List<String> stringCollection = new ArrayList<>();stringCollection.add("ddd2");stringCollection.add("aaa2");stringCollection.add("bbb1");stringCollection.add("aaa1");stringCollection.add("bbb3");stringCollection.add("ccc");stringCollection.add("bbb2");stringCollection.add("ddd1");

Filter 的入参是一个 Predicate, 上面已经说到,Predicate 是一个断言的中间操作,它能够帮我们筛选出我们需要的集合元素。它的返参同样 是一个 Stream 流,我们可以通过 foreach 终端操作,来打印被筛选的元素:

stringCollection.stream().filter((s) -> s.startsWith("a")).forEach(System.out::println);// "aaa2", "aaa1"

注:foreach 是一个终端操作,它的返参是 void, 我们无法对其再次进行流操作。

2.Sorted 排序

Sorted 同样是一个中间操作,它的返参是一个 Stream 流。另外,我们可以传入一个 Comparator 用来自定义排序,如果不传,则使用默认的排序规则。

stringCollection.stream().sorted().filter((s) -> s.startsWith("a")).forEach(System.out::println);// "aaa1", "aaa2"

需要注意,sorted 不会对 stringCollection 做出任何改变,stringCollection 还是原有的那些个元素,且顺序不变:

System.out.println(stringCollection);// ddd2, aaa2, bbb1, aaa1, bbb3, ccc, bbb2, ddd1

3.Map 转换

中间操作 Map 能够帮助我们将 List 中的每一个元素做功能处理。例如下面的示例,通过 map 我们将每一个 string 转成大写:

stringCollection.stream().map(String::toUpperCase).sorted((a, b) -> b.compareTo(a)).forEach(System.out::println);// "DDD2", "DDD1", "CCC", "BBB3", "BBB2", "AAA2", "AAA1"

另外,我们还可以做对象之间的转换,业务中比较常用的是将 DO(数据库对象) 转换成 BO(业务对象) 。

4.Match 匹配

顾名思义,match 用来做匹配操作,它的返回值是一个 boolean 类型。通过 match, 我们可以方便的验证一个 list 中是否存在某个类型的元素,主要用来校验操作。

// 验证 list 中 string 是否有以 a 开头的, 匹配到第一个,即返回 trueboolean anyStartsWithA =stringCollection.stream().anyMatch((s) -> s.startsWith("a"));System.out.println(anyStartsWithA);// true
// 验证 list 中 string 是否都是以 a 开头的boolean allStartsWithA =stringCollection.stream().allMatch((s) -> s.startsWith("a"));System.out.println(allStartsWithA);// false
// 验证 list 中 string 是否都不是以 z 开头的,boolean noneStartsWithZ =stringCollection.stream().noneMatch((s) -> s.startsWith("z"));System.out.println(noneStartsWithZ);// true

5.Count 计数

count 是一个终端操作,它能够统计 stream 流中的元素总数,返回值是 long 类型。

// 先对 list 中字符串开头为 b 进行过滤,让后统计数量long startsWithB =stringCollection.stream().filter((s) -> s.startsWith("b")).count();System.out.println(startsWithB);// 3

6.Reduce

Reduce 中文翻译为:减少、缩小。
注:通过入参的 Function,我们能够将 list 归约成一个值。它的返回类型是 Optional 类型。

Optional<String> reduced =stringCollection.stream().sorted().reduce((s1, s2) -> s1 + "#" + s2);reduced.ifPresent(System.out::println);// "aaa1#aaa2#bbb1#bbb2#bbb3#ccc#ddd1#ddd2"

七、Parallel-Streams 并行流

前面章节我们说过,stream 流是支持顺序和并行的。顺序流操作是单线程操作,而并行流是通过多线程来处理的,能够充分利用物理机 多核 CPU 的优势,同时处理速度更快。

首先,我们创建一个包含 1000000 UUID list 集合。

int max = 1000000;List<String> values = new ArrayList<>(max);for (int i = 0; i < max; i++) {UUID uuid = UUID.randomUUID();values.add(uuid.toString());}

分别通过顺序流和并行流,对这个 list 进行排序,测算耗时:
顺序流:

顺序流排序// 纳秒long t0 = System.nanoTime();long count = values.stream().sorted().count();System.out.println(count);long t1 = System.nanoTime();// 纳秒转微秒long millis = TimeUnit.NANOSECONDS.toMillis(t1 - t0);System.out.println(String.format("顺序流排序耗时: %d ms", millis));// 顺序流排序耗时: 899 ms

并行流:

// 纳秒long t0 = System.nanoTime();long count = values.parallelStream().sorted().count();System.out.println(count);long t1 = System.nanoTime();// 纳秒转微秒long millis = TimeUnit.NANOSECONDS.toMillis(t1 - t0);System.out.println(String.format("并行流排序耗时: %d ms", millis));// 并行流排序耗时: 472 ms

同样的逻辑处理,通过并行流,我们的性能提升了近 50%。完成这一切,我们需要做的仅仅是将 stream 改成了 parallelStream。

八、Map 集合

前面已经提到过 Map 是不支持 Stream 流的,因为 Map 接口并没有像 Collection 接口那样,定义了 stream() 方法。
注:我们可以对其 key, values, entry 使用 流操作,如 map.keySet().stream(), map.values().stream() 和 map.entrySet().stream().

另外, JDK 8 中对 map 提供了一些其他新特性:
putIfAbsent():

Map<Integer, String> map = new HashMap<>();for (int i = 0; i < 10; i++) {// 与老版不同的是,putIfAbent() 方法在 put 之前,// 会判断 key 是否已经存在,存在则直接返回 value, 否则 put, 再返回 valuemap.putIfAbsent(i, "val" + i);}
// forEach 可以很方便地对 map 进行遍历操作map.forEach((key, value) -> System.out.println(value));

除了上面的 putIfAbsent() 和 forEach() 外,我们还可以很方便地对某个 key 的值做相关操作:

// computeIfPresent(), 当 key 存在时,才会做相关处理// 如下:对 key 为 3 的值,内部会先判断值是否存在,存在,则做 value + key 的拼接操作map.computeIfPresent(3, (num, val) -> val + num);map.get(3); // val33// 先判断 key 为 9 的元素是否存在,存在,则做删除操作map.computeIfPresent(9, (num, val) -> null);map.containsKey(9); // false// computeIfAbsent(), 当 key 不存在时,才会做相关处理// 如下:先判断 key 为 23 的元素是否存在,不存在,则添加map.computeIfAbsent(23, num -> "val" + num);map.containsKey(23);// true// 先判断 key 为 3 的元素是否存在,存在,则不做任何处理map.computeIfAbsent(3, num -> "bam");map.get(3); // val33关于删除操作,JDK 8 中提供了能够新的 remove() API:map.remove(3, "val3");map.get(3); // val33map.remove(3, "val33");map.get(3); // null如上代码,只有当给定的 key 和 value 完全匹配时,才会执行删除操作。

关于添加方法,JDK 8 中提供了带有默认值的 getOrDefault() 方法:

// 若 key 42 不存在,则返回 not foundmap.getOrDefault(42, "not found");// not found对于 value 的合并操作也变得更加简单:// merge 方法,会先判断进行合并的 key 是否存在,不存在,则会添加元素map.merge(9, "val9", (value, newValue) -> value.concat(newValue));map.get(9); // val9// 若 key 的元素存在,则对 value 执行拼接操作map.merge(9, "concat", (value, newValue) -> value.concat(newValue));map.get(9); // val9concat

九、新的日期 API

Java 8 中在包 java.time 下添加了新的日期 API. 它和 Joda-Time 库相似,但又不完全相同。接下来,我会通过一些示例代码介绍一下新 API 中 最关键的特性:

1.Clock

Clock 提供对当前日期和时间的访问。我们可以利用它来替代 System.currentTimeMillis() 方法。另外,通过 clock.instant() 能够获取一个 instant 实例, 此实例能够方便地转换成老版本中的 java.util.Date 对象。

Clock clock = Clock.systemDefaultZone();long millis = clock.millis();Instant instant = clock.instant();Date legacyDate = Date.from(instant); // 老版本 java.util.Date

2.Timezones 时区

ZoneId 代表时区类。通过静态工厂方法方便地获取它,入参我们可以传入某个时区编码。另外,时区类还定义了一个偏移量,用来在当前时刻或某时间 与目标时区时间之间进行转换。

System.out.println(ZoneId.getAvailableZoneIds());// prints all available timezone idsZoneId zone1 = ZoneId.of("Europe/Berlin");ZoneId zone2 = ZoneId.of("Brazil/East");System.out.println(zone1.getRules());System.out.println(zone2.getRules());// ZoneRules[currentStandardOffset=+01:00]// ZoneRules[currentStandardOffset=-03:00]

3.LocalTime

LocalTime 表示一个没有指定时区的时间类,例如,10 p.m.或者 17:30:15,下面示例代码中,将会使用上面创建的 时区对象创建两个 LocalTime。然后我们会比较两个时间,并计算它们之间的小时和分钟的不同。

LocalTime now1 = LocalTime.now(zone1);LocalTime now2 = LocalTime.now(zone2);System.out.println(now1.isBefore(now2));// falselong hoursBetween = ChronoUnit.HOURS.between(now1, now2);long minutesBetween = ChronoUnit.MINUTES.between(now1, now2);System.out.println(hoursBetween); // -3System.out.println(minutesBetween); // -239

LocalTime 提供多个静态工厂方法,目的是为了简化对时间对象实例的创建和操作,包括对时间字符串进行解析的操作等。

LocalTime late = LocalTime.of(23, 59, 59);System.out.println(late); // 23:59:59DateTimeFormatter germanFormatter =DateTimeFormatter.ofLocalizedTime(FormatStyle.SHORT).withLocale(Locale.GERMAN);LocalTime leetTime = LocalTime.parse("13:37", germanFormatter);System.out.println(leetTime); // 13:37

4.LocalDate

LocalDate 是一个日期对象,例如:2014-03-11。它和 LocalTime 一样是个 final 类型对象。下面的例子演示了如何通过加减日,月,年等来计算一个新的日期。

LocalDate, LocalTime, 因为是 final 类型的对象,每一次操作都会返回一个新的时间对象。LocalDate today = LocalDate.now();// 今天加一天LocalDate tomorrow = today.plus(1, ChronoUnit.DAYS);// 明天减两天LocalDate yesterday = tomorrow.minusDays(2);// 2014 年七月的第四天LocalDate independenceDay = LocalDate.of(2014, Month.JULY, 4);DayOfWeek dayOfWeek = independenceDay.getDayOfWeek();System.out.println(dayOfWeek);// 星期五

也可以直接解析日期字符串,生成 LocalDate 实例。(和 LocalTime 操作一样简单)

DateTimeFormatter germanFormatter =DateTimeFormatter.ofLocalizedDate(FormatStyle.MEDIUM).withLocale(Locale.GERMAN);LocalDate xmas = LocalDate.parse("24.12.2014", germanFormatter);System.out.println(xmas); // 2014-12-24

5.LocalDateTime

LocalDateTime 是一个日期-时间对象。你也可以将其看成是 LocalDate 和 LocalTime 的结合体。操作上,也大致相同。

LocalDateTime 同样是一个 final 类型对象。

LocalDateTime sylvester = LocalDateTime.of(2014, Month.DECEMBER, 31, 23, 59, 59);DayOfWeek dayOfWeek = sylvester.getDayOfWeek();System.out.println(dayOfWeek);// 星期三Month month = sylvester.getMonth();System.out.println(month);// 十二月// 获取改时间是该天中的第几分钟long minuteOfDay = sylvester.getLong(ChronoField.MINUTE_OF_DAY);System.out.println(minuteOfDay);// 1439

如果再加上的时区信息,LocalDateTime 还能够被转换成 Instance 实例。Instance 能够被转换成老版本中 java.util.Date 对象。

Instant instant = sylvester.atZone(ZoneId.systemDefault()).toInstant();Date legacyDate = Date.from(instant);System.out.println(legacyDate); // Wed Dec 31 23:59:59 CET 2014格式化 LocalDateTime 对象就和格式化 LocalDate 或者 LocalTime 一样。除了使用预定义的格式以外,也可以自定义格式化输出。DateTimeFormatter formatter =DateTimeFormatter.ofPattern("MMM dd, yyyy - HH:mm");LocalDateTime parsed = LocalDateTime.parse("Nov 03, 2014 - 07:13", formatter);String string = formatter.format(parsed);System.out.println(string); // Nov 03, 2014 - 07:13

注意:和 java.text.NumberFormat 不同,新的 DateTimeFormatter 类是 final 类型的,同时也是线程安全的。更多细节请查看这里

十、Annotations 注解

在 Java 8 中,注解是可以重复的。Java 8 中,通过 @Repeatable,允许我们对同一个类使用多重注解。让我通过下面的示例代码,来看看到底是咋回事。

首先,我们定义一个包装注解,里面包含了一个有着实际注解的数组:

@interface Hints {Hint[] value();}@Repeatable(Hints.class)@interface Hint {String value();}

第一种形态:使用注解容器(老方法)

@Hints({@Hint("hint1"), @Hint("hint2")})class Person {}

第二种形态:使用可重复注解(新方法)

@Hint("hint1")@Hint("hint2")class Person {}

使用第二种形态,Java 编译器能够在内部自动对 @Hint 进行设置。这对于需要通过反射来读取注解信息时,是非常重要的。

Hint hint = Person.class.getAnnotation(Hint.class);System.out.println(hint); // nullHints hints1 = Person.class.getAnnotation(Hints.class);System.out.println(hints1.value().length);// 2Hint[] hints2 = Person.class.getAnnotationsByType(Hint.class);System.out.println(hints2.length);// 2

尽管我们绝对不会在 Person 类上声明 @Hints 注解,但是它的信息仍然是可以通过 getAnnotation(Hints.class) 来读取的。 并且,getAnnotationsByType 方法会更方便,因为它赋予了所有 @Hints 注解标注的方法直接的访问权限。

@Target({ElementType.TYPE_PARAMETER, ElementType.TYPE_USE})@interface MyAnnotation {}

总结:Java8新特性是必须了解学习的内容,总结这大体的十条让你有一个全面的认识,之后会一一详细进行讲解。希望对您有帮助,感谢阅读

结束语:裸体一旦成为艺术,便是最圣洁的。道德一旦沦为虚伪,便是最下流的。
勇敢去做你认为正确的事,不要被世俗的流言蜚语所困扰。

© 版权声明
THE END
喜欢就支持一下吧
点赞0 分享