欢迎访问我的GitHub
这里分类和汇总了欣宸的全部原创(含配套源码):https://github.com/zq2599/blog_demos
本篇概览
- 本文是《LeetCode952三部曲》系列之二,在前文中,咱们详细分析了解题思路,然后按照思路写出了代码,在LeetCode提交成功,成绩如下图所示,137ms,超过39%
- 不得不说这个成绩很不理想,于是今天咱们来尝试进行优化,以减低时间,提升百分比
优化点预判
- 回顾一下题目要求,如下所示
- 上图中有个重要条件:入参数组中,最大值不超过100000
- 回顾咱们在初始化并查集数据结构的时候,需要满足数组下标代表数字身份这个特性,例如fathers[100000]=123的含义是数字100000的父节点是123,所以数组长度必须是100001,代码如下
int[] fathers = new int[100001];
- 而在实际的并查集操作中,如果入参是4,6,15,35这四个数字,那么fathers这个数组中真正被我们用到的也就只有fathers[4]、fathers[6]、fathers[15]、fathers[35]这四个元素,其他100001-4=99997个元素都没有用到,而代码中还要为这些无用的元素分配空间,还要消耗时间去初始化,这是极大的浪费
- 对于另一个数组rootSetSize,用于记录下标位置元素的子树大小,亦是如此,99997个元素也都浪费了
- 以上就是要优化的地方:如果入参是四个数字,那么fathers和rootSetSize的大小能缩减到四吗?
- 这就需要分析一下了
优化分析
先回顾一下解题思路,整个流程如下图所示
假设此题的入参是这四个数字:4,6,15, 35,回顾什么时候咱们会用到这四个数字,显然计算每个数字的质因数的时候必然会用到,计算完成后,得到了下图的关系(这是前文的内容)
然后,咱们根据上图,得到了每个质因数对应的数字集合,也就是下图
看着上图,重点来了:从上图开始,再到后面的并查集操作,再到最终的结束,都不会用4、6、15、35这样的数字去计算什么了
所以,上面那幅图中的4、6、15、35,是不是可以替换成他们在入参数组中的下标?假设入参数组是[4,6,15,35],他们的数组下标就分别是:0、1、2、3
将数字替换成数组下标后,上面那幅图的内容就有了变化,变成了下图的样子,之前的[4,6,15,35]四个数字变成了[0,1,2,3]
接下来的并查集操作中,也可以用[0,1,2,3]取代[4,6,15,35]也可以吗?
当然可以,之前是合并4和6,现在变成了合并0和1,题目是要的是连通的数量,而某个唯一的数字到底是4还是它的数组下标0,这不重要了,重要的是合并不能有错就行
这样替换后,如果入参是四个数字,不论值是多少,在并查集操作时,只需要用到它们的数组下标:0、1、2、3,最大也只有3
这就有意思了,数组fathers和rootSetSize的大小从100001变成了入参数组的长度!
准备工作完成了,可以正式动手优化了
优化代码
- 首先,要修改的是定义fathers和rootSetSet的代码,之前是创建固定长度的数组,现在改成先不创建,而是等到后面知道入参数组长度的时候再说
- 然后是largestComponentSize方法中的内容,如下图,存入map的时候,以前存入的是入参的数字,现在传入的是数字对应的数组下标
- 最后还看到一些代码略有瑕疵,于是顺手改了,如下图,其实影响不大
- 以上就是改动的全部了
- 最后附上优化后的完整源码
class Solution { // 并查集的数组, fathers[3]=1的意思是:数字3的父节点是1// int[] fathers = new int[100001]; int[] fathers; // 并查集中,每个数字与其子节点的元素数量总和,rootSetSize[5]=10的意思是:数字5与其所有子节点加在一起,一共有10个元素// int[] rootSetSize = new int[100001]; int[] rootSetSize; // map的key是质因数,value是以此key作为质因数的数字 // 例如题目的数组是[4,6,15,35],对应的map就有四个key:2,3,5,7 // key等于2时,value是[4,6],因为4和6的质因数都有2 // key等于3时,value是[6,15],因为6和16的质因数都有3 // key等于5时,value是[15,35],因为15和35的质因数都有5 // key等于7时,value是[35],因为35的质因数有7 Map<Integer, List> map = new HashMap(); // 用来保存并查集中,最大树的元素数量 int maxRootSetSize = 1; /** * 带压缩的并查集查找(即寻找指定数字的根节点) * @param i */ private int find(int i) { // 如果执向的是自己,那就是根节点了 if(fathers[i]==i) { return i; } // 用递归的方式寻找,并且将整个路径上所有长辈节点的父节点都改成根节点, // 例如1的父节点是2,2的父节点是3,3的父节点是4,4就是根节点,在这次查找后,1的父节点变成了4,2的父节点也变成了4,3的父节点还是4 fathers[i] = find(fathers[i]); return fathers[i]; } /** * 并查集合并,合并后,child会成为parent的子节点 * @param parent * @param child */ private void union(int parent, int child) { int parentRoot = find(parent); int childRoot = find(child); // 如果有共同根节点,就提前返回 if (parentRoot==childRoot) { return; } // child元素根节点是childRoot,现在将childRoot的父节点从它自己改成了parentRoot, // 这就相当于child所在的整棵树都拿给parent的根节点做子树了 fathers[childRoot] = fathers[parentRoot]; // 合并后,这个树变大了,新增元素的数量等于被合并的字数元素数量 rootSetSize[parentRoot] += rootSetSize[childRoot]; // 更像最大数量 maxRootSetSize = Math.max(maxRootSetSize, rootSetSize[parentRoot]); } public int largestComponentSize(int[] nums) { // 对数组中的每个数,算出所有质因数,构建map for (int i=0;i<nums.length;i++) { int cur = nums[i]; for (int j=2;j*j new ArrayList()).add(nums[i]); map.computeIfAbsent(j, key -> new ArrayList()).add(i); } // 从cur中将j的因数全部去掉 while (cur%j==0) { cur /= j; } } // 能走到这里,cur一定是个质数, // 因为nums[i]被除过多次后结果是cur,所以nums[i]能被cur整除,所以cur是nums[i]的质因数,应该放入map中 if (cur!=1) {// map.computeIfAbsent(cur, key -> new ArrayList()).add(nums[i]); map.computeIfAbsent(cur, key -> new ArrayList()).add(i); } } fathers = new int[nums.length]; rootSetSize = new int[nums.length]; // 至此,map已经准备好了,接下来是并查集的事情,先要初始化数组 for(int i=0;i< fathers.length;i++) { // 这就表示:数字i的父节点是自己 fathers[i] = i; // 这就表示:数字i加上其下所有子节点的数量等于1(因为每个节点父节点都是自己,所以每个节点都没有子节点) rootSetSize[i] = 1; } // 遍历map for (int key : map.keySet()) { // 每个key都是一个质因数 // 每个value都是这个质因数对应的数字 List list = map.get(key); int size = list.size(); // 超过1个元素才有必要合并 if (size>1) { // 取第0个元素作为父节点 int parent = list.get(0); // 将其他节点全部作为地0个元素的子节点 for(int i=1;i<size;i++) { union(parent, list.get(i)); } } } return maxRootSetSize; }}
- 写完代码,提交LeetCode,顺利AC,咱们将优化前和优化后的数据放在一起对比一下,如下图,左边是优化前,右边是优化后,虽然不能算大幅度提升,但勉强算是有明显提升了
- 至此,第一次优化就完成了,超过50%的成绩依旧很一般,还能进一步提升吗?大幅度提升那种
- 答案自然是可以,感谢咱们这两篇的努力,让我们对解题思路有了深刻理解,接下来,期待第三篇吧,我们会来一次更有效的优化
- 剧透一下:优化点和算素数有关
欢迎访问我的GitHub
这里分类和汇总了欣宸的全部原创(含配套源码):https://github.com/zq2599/blog_demos
欢迎关注博客园:程序员欣宸
学习路上,你不孤单,欣宸原创一路相伴…