回归预测 | MATLAB实现GWO-SVM灰狼优化算法优化支持向量机多输入单输出回归预测(多指标,多图)

目录

    • 回归预测 | MATLAB实现GWO-SVM灰狼优化算法优化支持向量机多输入单输出回归预测(多指标,多图)
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览



基本介绍

回归预测 | MATLAB实现GWO-SVM灰狼优化算法优化支持向量机多输入单输出回归预测(多指标,多图),输入多个特征,输出单个变量,多输入单输出回归预测;
多指标评价,代码质量极高;excel数据,方便替换,运行环境2018及以上。

程序设计

  • 完整源码和数据获取方式:私信回复MATLAB实现GWO-SVM灰狼优化算法优化支持向量机多输入单输出回归预测(多指标,多图)(多指标,多图)
%%清空环境变量warning off % 关闭报警信息close all % 关闭开启的图窗clear % 清空变量clc % 清空命令行%%导入数据res = xlsread('data.xlsx');%%划分训练集和测试集temp = randperm(103);P_train = res(temp(1: 80), 1: 7)';T_train = res(temp(1: 80), 8)';M = size(P_train, 2);P_test = res(temp(81: end), 1: 7)';T_test = res(temp(81: end), 8)';N = size(P_test, 2);%%数据归一化[p_train, ps_input] = mapminmax(P_train, 0, 1);p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);t_test = mapminmax('apply', T_test, ps_output);%%仿真测试t_sim1 = sim(net, p_train);t_sim2 = sim(net, p_test);%%数据反归一化T_sim1 = mapminmax('reverse', t_sim1, ps_output);T_sim2 = mapminmax('reverse', t_sim2, ps_output);%%均方根误差error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);%%相关指标计算% 决定系数 R2R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;R2 = 1 - norm(T_test -T_sim2)^2 / norm(T_test -mean(T_test ))^2;disp(['训练集数据的R2为:', num2str(R1)])disp(['测试集数据的R2为:', num2str(R2)])% 平均绝对误差 MAEmae1 = sum(abs(T_sim1 - T_train)) ./ M ;mae2 = sum(abs(T_sim2 - T_test )) ./ N ;disp(['训练集数据的MAE为:', num2str(mae1)])disp(['测试集数据的MAE为:', num2str(mae2)])% 平均相对误差 MBEmbe1 = sum(T_sim1 - T_train) ./ M ;mbe2 = sum(T_sim2 - T_test ) ./ N ;disp(['训练集数据的MBE为:', num2str(mbe1)])disp(['测试集数据的MBE为:', num2str(mbe2)])

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718