Tensorflow 2.x 模型-部署与实践

工作原理

架构图

**核心概念 **

**⑦ ServableHandler:**servable实例,用于处理client发送的请求

servable的生命周期:

● 一个Source插件会为一个特定的version创建一个Loader。该Loaders包含了在加载Servable时所需的任何元数据

● Source会使用一个callback来通知该Aspired Version的Manager

● 该Manager应用该配置过的Version Policy来决定下一个要采用的动作,它会被unload一个之前已经加载过的version,或者加载一个新的version

● 如果该Manager决定它是否安全,它会给Loader所需的资源,并告诉该Loader来加载新的version

● Clients会告知Manager,即可显式指定version,或者只请求最新的version。该Manager会为该Servable返回一个handle

图片[1] - Tensorflow 2.x 模型-部署与实践 - MaxSSL

Tensorflow 2.x 模型部署

图片[2] - Tensorflow 2.x 模型-部署与实践 - MaxSSL

TF serving环境准备

Tensorflow Serving环境最简单的安装方式是docker镜像安装。

docker pull tensorflow/sering:last
sudo apt-get install -y nvidia-docker2
docker pull tensorflow/serving:latest-devel-gpu

模型保存—savedmodel

Tensorflow 2.x模型有以下几种格式:

model.save_weights(“./xxx.ckpt” , save_format=”tf”)
model.save(“./xxx.h5”)model.save_weights(“./xxx.h5”, save_format=”h5”)
model.save(“./xxx”, save_format=”tf”)tf.saved_model.save(obj, “./xxx”)
model.to_json()

图片[3] - Tensorflow 2.x 模型-部署与实践 - MaxSSL

# coding=utf-8import tensorflow as tfclass TestTFServing(tf.Module):    def __init__(self):        self.x = tf.Variable("hello", dtype = tf.string,trainable=True)    @tf.function(input_signature=[tf.TensorSpec(shape = [], dtype = tf.string)])    def concat_str(self, a):        self.x = self.x + a        return self.x    @tf.function(input_signature=[tf.TensorSpec(shape = [], dtype = tf.string)])    def cp_str(self, b):        self.x.assign(b)        return self.xif __name__ == '__main__':    demo = TestTFServing()    tf.saved_model.save(demo, "model\\test\\1", signatures={"test_assign": demo.cp_str,\     "test_concat": demo.concat_str})
# coding=utf-8import tensorflow as tfclass DenseNet(tf.keras.Model):    def __init__(self):        super(DenseNet, self).__init__()    def build(self, input_shape):        self.dense1 = tf.keras.layers.Dense(15, activation='relu')        self.dense2 = tf.keras.layers.Dense(10, activation='relu')        self.dense3 = tf.keras.layers.Dense(1, activation='sigmoid')        super(DenseNet, self).build(input_shape=input_shape)    def call(self, x):        x = self.dense1(x)        x = self.dense2(x)        x = self.dense3(x)        return xif __name__ == '__main__':    model = DenseNet()    model.build(input_shape=(None, 15))    model.summary()    inputs = tf.random.uniform(shape=(10, 15))    model._set_inputs(inputs=inputs) # tf2.0 need add this line    model.save(".\\model\\test\\2", save_format="tf")    tf.keras.models.save_model(model, ".\\model\\test\\3", save_format="tf")

图片[4] - Tensorflow 2.x 模型-部署与实践 - MaxSSL

服务启动

图片[5] - Tensorflow 2.x 模型-部署与实践 - MaxSSL

docker run -p 8500:8500 -p 8501:8501 --mount "type=bind,source=/home/test/ybq/model/demo,target=/models/demo" -e MODEL_NAME=demo tensorflow/serving:latest
docker run -p 8500:8500 -p 8501:8501 --runtime nvidia --mount "type=bind,source=/home/test/ybq/model/demo,target=/models/demo" -e MODEL_NAME=demo tensorflow/serving:latest-gpu

图片[6] - Tensorflow 2.x 模型-部署与实践 - MaxSSL

Warm up 模型

图片[7] - Tensorflow 2.x 模型-部署与实践 - MaxSSL

由于tensorflow有些组件是懒加载模式,因此第一次请求预测会有很严重的延迟,为了降低懒加载的影响,需要在服务初始启动的时候给一些小的请求样本,为了降低懒加载的影响,需要在服务初始启动的时候给一些小的样本(tfrecord格式),调用模型的预测接口,预热模型。

WarmUp Model步骤如下所示:

# coding=utf-8import tensorflow as tffrom tensorflow_serving.apis import model_pb2from tensorflow_serving.apis import predict_pb2from tensorflow_serving.apis import prediction_log_pb2def main():    with tf.io.TFRecordWriter("tf_serving_warmup_requests") as writer:        request = predict_pb2.PredictRequest(            model_spec=model_pb2.ModelSpec(name="demo", signature_name='serving_default'),            inputs={"x": tf.make_tensor_proto(["warm"]),                     "y": tf.make_tensor_proto(["up"])}        )        log = prediction_log_pb2.PredictionLog(            predict_log=prediction_log_pb2.PredictLog(request=request))        writer.write(log.SerializeToString())if __name__ == "__main__":    main()

图片[8] - Tensorflow 2.x 模型-部署与实践 - MaxSSL

图片[4] - Tensorflow 2.x 模型-部署与实践 - MaxSSL

模型维护

图片[10] - Tensorflow 2.x 模型-部署与实践 - MaxSSL

默认版本维护策略是只会加载同时加载servable的一个版本,但是我们可以通过配置config,修改模型版本加载策略,也可以通过配置多个模型,同时维护多个模型。

model_config_list {  config {    name: "demo"    base_path: "/models/demo"    model_platform: "tensorflow"    model_version_policy{        specific {            versions: 1            versions: 2        }    }  }}
docker run -p 8500:8500 -p 8501:8501 --mount "type=bind,source=/home/test/ybq/model/demo,target=/models/demo" -e MODEL_NAME=demo \tensorflow/serving:latest \--model_config_file=/models/demo/model.config \--model_config_file_poll_wait_seconds=60
model_config_list {  config {    name: "demo"    base_path: "/models/model/demo"    model_platform: "tensorflow"    model_version_policy{        specific {            versions: 1            versions: 2        }    }  }  config {    name: "111"    base_path: "/models/model/111"    model_platform: "tensorflow"    model_version_policy{        specific {            versions: 1        }    }  }}
docker run  -p 8500:8500 -p 8501:8501 --mount "type=bind,source=/home/test/ybq/model/,target=/models/model" tensorflow/serving:latest \--model_config_file=/models/model/models.config \--model_config_file_poll_wait_seconds=60

图片[11] - Tensorflow 2.x 模型-部署与实践 - MaxSSL

服务调用

图片[12] - Tensorflow 2.x 模型-部署与实践 - MaxSSL

TF Serving提供了两种方式,一种是grpc方式(默认端口是8500),另一种是http接口调用方式(默认端口是8501)。

对于tensorflow2.x版本生成的saved_model模型,没有像1.x版本使用SavedModelBuilder API自定义签名(输入输出的数据类型+方法),2.x版本模型输入的数据类型可以通过@tf.function中的input_signature参数指定,方法目前来看是写死在源码中的,只有signature_constants.PREDICT_METHOD_NAME一种。很多时候模型的输入输出对我们来说是黑盒的,而在调用服务接口的时候我们需要知道模型的输入输出以及签名的key,我们可以使用saved_model_cli show –dir model/test/1 –all来查看我们需要的参数。

图片[13] - Tensorflow 2.x 模型-部署与实践 - MaxSSL

grpc和http请求对应的代码片段分别如下所示:

# coding=utf-8import requestsimport jsonimport tensorflow as tffrom tensorflow_serving.apis import predict_pb2from tensorflow_serving.apis import prediction_service_pb2_grpcimport grpcdef test_grpc():    channel = grpc.insecure_channel('{host}:{port}'.format(host="127.0.0.1", port=8500))    stub = prediction_service_pb2_grpc.PredictionServiceStub(channel)    request = predict_pb2.PredictRequest()    request.model_spec.name = "demo"    request.model_spec.signature_name = "test_concat"    request.inputs['a'].CopyFrom(tf.make_tensor_proto("xxx"))    result = stub.Predict(request, 10.0)    return result.outputsdef test_http():    params = json.dumps({"signature_name": "test_concat", "inputs": {"a": "xxx"}})    data = json.dumps(params)    rep = requests.post("http://127.0.0.1:8501/v1/models/demo/version1/:predict", data=data)    return rep.text
© 版权声明
THE END
喜欢就支持一下吧
点赞0 分享