Copilot 是 Github 推出的一款人工智能编程助手,推出仅一年就受到大量开发者的追捧(据官方统计有 120 万用户)。然而,自 2022 年 6 月起,它改为了付费订阅模式(每月 10 美元或每年 100 美元)。
我们暂且不讨论训练代码可能涉及的版权及授权许可问题,可以肯定的是,利用机器学习训练出智能编程 AI 模型,这会是未来的大势所趋!
巧合的是,仅在 Copilot 宣布收费的几天后,Amazon 就推出了一款竞品 CodeWhisperer!相信在不久的将来,类似的产品会如雨后春笋般涌现,到那时,程序员和编程学习者们就更加有福了!
作者:Brian Tarbox
译者:豌豆花下猫@Python猫
英文:https://blog.symops.com/2022/08/31/amazon-codewhisperer
转载请保留作者&译者&来源信息
代码补全最早出现在 1985 年的一个名为 Alice 的 Pascal 编辑器上。它支持自动缩进、自动补全 BEGIN/END 控制结构,甚至支持语法着色。
争议也随之而来:在 Alice 的早期,人们担心代码补全使得编写软件过于简单。但它实际上只是一个语法助手。
代码补全可以帮你写出语法正确的、可编译的代码,但它不能帮你写出语义正确的代码,甚至不能写出任何有用的代码。
GitHub 的 CoPilot 和 Amazon 的 CodeWhisperer 改变了这一点,它们除了提供语法辅助,还能生成语义上正确的代码。它们不仅能提供 if 语句的大纲,还能创建出完整的代码样例。
但在 2022 年,一个代码辅助工具到底能好到什么程度呢?
本文将重点介绍 CodeWhisperer,尝试回答这个问题。
试用:用 Python 从 S3 读取数据
亚马逊在 2022 年 6 月发布了 CodeWhisperer 预览版,现在它支持 Python、Java 和 JavaScript。
Python猫注:截至2022年9月17日,这个服务还未全面开放。
若要试用,可在官网申请:https://pages.awscloud.com/codewhisperer-sign-up-form.html
附官方介绍:https://aws.amazon.com/cn/blogs/compute/introducing-amazon-codewhisperer-in-the-aws-lambda-console-in-preview
在 AWS 博客的一篇文章中,Mark Richman 解释说,CodeWhisperer 的模型是在“包括 Amazon 开源代码在内的各种数据源”上训练的。有了这个语料库(显然确实存在)完善 CodeWhisperer 的模型,编写从 S3 读取文件的代码应该是一个很好的测试用例。
在使用 CodeWhisperer(CW)时,你需要写一个注释,描述你希望函数去做什么。注释的描述性和准确性越高,系统就越能更好地推断出你想要的逻辑。
Function to open an S3 file
注释以 Function 开头,让 CW 知道你想要创建一个函数。也就是说,你需要添加一个注释,作为给 CW 的提示。
CW 分析注释并生成一个函数的定义。此时,你可以在生成函数体之前修改函数定义。CW 还可能提供多种函数定义供你选择。
IntelliJ 集成 CodeWhisperer 的截图
点击“插入代码”,你的函数就在注释的下方创建好了。注意 CodeWhisperer 不仅插入了代码,还创建了一个文档字符串。
# Function to open an S3 filedef open_s3_file(filename): """ :param filename: :return: """ s3 = boto3.resource('s3') return s3.Object(bucket, filename).get()['Body'].read()
看起来不错!这段代码实现了你的注释所期望的功能,并且是在几秒钟内就生成了。节省了查找boto3
API 的时间,你只需要检查代码,确保语义正确。
接着看看提出更多要求时,会发生什么。
这有一个很有用的例子:写一个函数从 S3 的文件中返回前“n”行。
# Function to get first n lines from a file in S3def get_first_n_lines_from_s3(filename, n): """ Get the first n lines of a file in S3 :param filename: :param n: :return: """ lines = [] for line in open_s3_file(filename): lines.append(line) if len(lines) >= n: break return lines
真厉害!CodeWhisperer 使用了之前创建的辅助方法 open_s3_file,并生成了正确的函数。
在 CW 生成函数体之前,你可以修改参数名,提高代码的可读性。例如,如果我们输入:
# Function to find common elements in lists
CW 会提示:
def find_common_elements(list1, list2)
在生成函数体之前,我们可以修改函数定义,使其更具描述性:
def find_common_elements(first, second)
如果我们接受它的函数定义,CodeWhisperer 将使用函数签名和注释来构建函数体。得到的函数将使用改进后的参数名。
# Function to find common elements in listsdef find_common_elements(first, second): return list(set(first) & set(second))
CodeWhisperer 不仅仅可以创建整个函数;它还可以在函数中插入代码片段,并在过程中推断相关变量。
# reverse the list order lines.reverse()
CodeWhisperer 是一个重要的生产力助推器
使用 CodeWhisperer,我能够更快地编写代码。到目前为止,最大的价值是 S3 示例所演示的功能。
如果我自己写代码,大部分时间将会用来查找 boto API 文档,以确保写出正确的调用。使用 CodeWhisperer,则只需三秒钟。
这让我想到了一段曾花了很多时间的烦人代码:给 CloudWatch 发送数据。让我们看看 CodeWhisperer 能否有所帮助,试试提供注释:“Function to emit a CloudWatch metric”。
# Function to emit a cloudwatch metricdef put_metric_data(metric_name, metric_data): """ Put a metric data into cloudwatch :param metric_name: :param metric_data: :return: """ cloudwatch = boto3.client('cloudwatch') cloudwatch.put_metric_data( Namespace='my_namespace', MetricData=[ { 'MetricName': metric_name, 'Dimensions': [ { 'Name': 'string', 'Value': 'string' }, ], 'Unit': 'Seconds', 'Value': metric_data }, ] )
非常有用!CW 为我节省了许多打字和查阅 API 文档的时间。
我有可能需要重构这段代码,但即使我从零开始编写它,第一步也要写出类似这样的原始逻辑。如今只花三秒钟,我节省了编写大量样板代码的时间,有了一个很好的自定义或重构的起点。
那么 CodeWhisperer 是一个比我更好的程序员吗?
尽管有一丝标题党,但 CW 的代码是否比我的好,这并不重要。重要的是,它可以为我节省大量的时间和精力,让我能够专注于改进、重构和测试。
它通过承担一些同质化的繁重工作,让我有机会成为一个更好的程序员。
上面的例子是 Amazon 工具(经过 Amazon 开源代码训练)能够表现出色的例子。当然,在大多数开发人员需要花费很多时间的地方,比如编写领域相关的逻辑时,CW 也许不会非常有用。让我们看看 CW 会出什么问题。
我们可以从 Python 文档中的数据类示例开始。
@dataclassclass InventoryItem: """Class for keeping track of an item in inventory.""" name: str unit_price: float quantity_on_hand: int = 0 def total_cost(self) -> float: return self.unit_price * self.quantity_on_hand
我想知道 CodeWhisperer 是否可以向这个类添加一个方法。让我们看看如果添加注释:” Function that return this item costs more than $10″,会发生什么?
@dataclassclass InventoryItem: """Class for keeping track of an item in inventory.""" name: str unit_price: float quantity_on_hand: int = 0 def total_cost(self) -> float: return self.unit_price * self.quantity_on_hand # Function that returns whether this item costs more than $10 def expensive(self) -> bool: return self.unit_price > 10
非常酷。值得注意的是,CW 给函数起了一个直观的名字,并包含了对 self 的引用。
接着,让我们尝试用 CW 来做测试,看是否会触及它的极限。
# Function to test InventoryItem classdef test_inventory_item(): """ Test InventoryItem class :return: """ item = InventoryItem("Widget", 10, 5) assert item.name == "Widget" assert item.unit_price == 10 assert item.quantity_on_hand == 5 assert item.total_cost() == 50 assert not item.expensive()
?哇!在上面的代码中,我输入了注释,CW 自动完成了剩下的工作。
测试似乎是一个极好的证明 CW 可以节省时间的例子。我不需要浪费时间去想测试的值,也不用输入所有的成员变量和方法。
CodeWhisperer 的局限性
它现在还处于初级阶段,还有很多问题。
研究人员发现,GitHub CoPilot 生成的代码有 40% 存在安全漏洞。
CodeWhisperer 还没有这类的统计数据,但 AWS 似乎强调了对安全性的关注。
据我测试,在一些例子中,CW 生成的函数有 bug,或者结果没有符合我的意图。
下方的例子应该返回两个文件中最长的公共行,但它只返回了第一个匹配的行:
# Function to find the longest common line in two filesdef find_longest_common_line(file1, file2): """ Find the longest common line in two files :param file1: :param file2: :return: """ with open(file1, 'r') as f1: with open(file2, 'r') as f2: for line in f1: if line in f2: return line
CW 还出现了其它问题,原因是它没有足够的上下文来理解我的意图。经过反思,我觉得如果周围的代码结构很好的话,也是可以实现的。
如果你在设计代码时用了准确表示领域的名词,那么,在给出了良好注释的前提下,很容易想象 CW 能够创建出特定于领域的逻辑。至于 bug,将来肯定会得到改善的。
写在最后
如果你尝试使用 CW,它可能会让你想象:可能有一天,有人会写出历史上最后一行由人类编写的代码。
在那之前,CW 可以帮助你成为一个更好的程序员,这样即使世界上最后一个程序员是你,人类的最后一行代码也不会有 bug。
本文首发于 Python猫 ,未经许可,请勿转载
知乎:Python猫
博客园:豌豆花下猫
掘金:豌豆花下猫
CSDN:Python猫