在上一篇博客中,我介绍了用Tensorflow来重现GPT 1的模型和训练的过程。这次我打算用Pytorch来重现GPT 2的模型并从头进行训练。
GPT 2的模型相比GPT 1的改进并不多,主要在以下方面:
1. GPT 2把layer normalization放在每个decoder block的前面。
2. 最终的decoder block之后额外添加了一个layer normalization。
3. 残差层的参数初始化根据网络深度进行调节
4. 训练集采用了webtext(45GB),而不是之前采用的bookcorpus(5GB)
5. 更深的网络结构,最大的模型拥有15亿的参数,对比GPT 1是1.2亿的参数
GPT 2有以下四种不同深度的模型架构,如图:
以下我将用pytorch代码来搭建一个GPT 2的模型,以最小的GPT 2为例,采用bookcorpus的数据,在AutoDL平台的一个40G显存的A100显卡上进行训练,看看效果如何。
模型结构
整个模型的结构和GPT 1是基本一致的。
定义一个多头注意力模块,如以下代码:
class MHA(nn.Module):def __init__(self, d_model, num_heads, attn_pdrop, resid_pdrop):super().__init__()self.d_model = d_modelself.num_heads = num_headsself.attn_pdrop = attn_pdropself.resid_dropout = nn.Dropout(resid_pdrop)self.ln = nn.Linear(d_model, d_model*3)self.c_proj = nn.Linear(d_model, d_model)def forward(self, x):B, T, C = x.size()x_qkv = self.ln(x)q, k, v = x_qkv.split(self.d_model, dim=2)q = q.view(B, T, self.num_heads, C//self.num_heads).transpose(1, 2)k = k.view(B, T, self.num_heads, C//self.num_heads).transpose(1, 2)v = v.view(B, T, self.num_heads, C//self.num_heads).transpose(1, 2)y = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=self.attn_pdrop if self.training else 0, is_causal=True)y = y.transpose(1, 2).contiguous().view(B, T, C)y = self.c_proj(y)y = self.resid_dropout(y)return y
这个模块接收一个输入数据,大小为(batch_size, seq_len, dimension),然后进行一个线性变换层,把数据映射为(batch_size, seq_len, dimension*3)的维度,这里的dimension*3表示的是qkv这三个值的拼接。接着就把这个数据切分为q,k,v三份,然后每份都把维度调整为(batch_size, seq_len, num_head, dimension/num_head),num_head表示这个自注意力模块包含多少个head。最后就可以调用scaled_dot_product_attention进行qk的相似度计算,进行缩放之后与v值相乘。Pytorch的这个函数提供了最新的flash attention的实现,可以大幅提升计算性能。最后就是对qkv的结果进行一个线性变换,映射为一个(batch_size, seq_len, dimension)的向量。
自注意力模块的输出结果,将通过一个Feed forward层进行计算,代码如下:
class FeedForward(nn.Module):def __init__(self, d_model, dff, dropout):super().__init__()self.ln1 = nn.Linear(d_model, dff)self.ln2 = nn.Linear(dff, d_model)self.dropout = nn.Dropout(dropout)self.layernorm = nn.LayerNorm(d_model)self.gelu = nn.GELU()def forward(self, x):x = self.ln1(x)x = self.gelu(x)x = self.ln2(x)x = self.dropout(x)return x
代码很简单,就是做了两次线性变换,第一次把维度扩充到dimension*4,第二次把维度恢复为dimension。
最后定义一个decoder block模块,把多头注意力模块和feed forward模块组合起来,代码如下:
class Block(nn.Module):def __init__(self, d_model, num_heads, dff, attn_pdrop, resid_pdrop, dropout):super().__init__()self.layernorm1 = nn.LayerNorm(d_model)self.attn = MHA(d_model, num_heads, attn_pdrop, resid_pdrop)self.layernorm2 = nn.LayerNorm(d_model)self.ff = FeedForward(d_model, dff, dropout)def forward(self, x):x = x + self.attn(self.layernorm1(x))x = x + self.ff(self.layernorm2(x))return x
有了decoder block之后,GPT 2的模型就是把这些block串起来,例如最小的GPT 2的模型结构是定义了12个decoder block。模型接收的是字符序列经过tokenizer之后的数字,然后把这些数字通过embedding层映射为向量表达,例如对每个token id,映射为784维度的一个向量。为了能在embedding的向量里面反映字符的位置信息,我们需要把字符的位置也做一个embedding,然后两个embedding相加。
输入数据经过embedding处理后,通过多个decoder block处理之后,数据的维度为(batch_size, seq_len, dimension), 我们需要通过一个权重维度为(dimension, vocab_size)的线性变换,把数据映射为(batch_size, seq_len, vocab_size)的维度。这里vocab_size表示tokenizer的单词表的长度,例如对于GPT 2所用的tokenizer,有50257个单词。对于输出数据进行softmax计算之后,我们就可以得到每个token的预测概率,从而可以和label数据,即真实的下一个token id进行比较,计算loss值。
GPT 2模型的代码如下:
class GPT2(nn.Module):def __init__(self, vocab_size, d_model, block_size, embed_pdrop, num_heads, dff, attn_pdrop, resid_pdrop, dropout, num_layer):super().__init__()self.token_embed = nn.Embedding(vocab_size, d_model, sparse=False)self.pos_embed = nn.Embedding(block_size, d_model, sparse=False)self.dropout_embed = nn.Dropout(embed_pdrop)#self.blocks = [Block(d_model, num_heads, dff, attn_pdrop, resid_pdrop, dropout) for _ in range(num_layer)]self.blocks = nn.ModuleList([Block(d_model, num_heads, dff, attn_pdrop, resid_pdrop, dropout) for _ in range(num_layer)])self.num_layer = num_layerself.block_size = block_sizeself.lm_head = nn.Linear(d_model, vocab_size, bias=False)self.token_embed.weight = self.lm_head.weightself.layernorm = nn.LayerNorm(d_model)self.apply(self._init_weights)# apply special scaled init to the residual projections, per GPT-2 paperfor pn, p in self.named_parameters():if pn.endswith('c_proj.weight'):torch.nn.init.normal_(p, mean=0.0, std=0.02/math.sqrt(2 * num_layer))def _init_weights(self, module):if isinstance(module, nn.Linear):torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)if module.bias is not None:torch.nn.init.zeros_(module.bias)elif isinstance(module, nn.Embedding):torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)def forward(self, x, targets=None):device = x.deviceb, t = x.size()pos = torch.arange(0, t, dtype=torch.long, device=device) x = self.token_embed(x) + self.pos_embed(pos)x = self.dropout_embed(x)for block in self.blocks:x = block(x)x = self.layernorm(x)if targets is not None:logits = self.lm_head(x)loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)else:logits = self.lm_head(x[:, -1, :])loss = Nonereturn logits, lossdef configure_optimizers(self, weight_decay, learning_rate, betas, device_type):# start with all of the candidate parametersparam_dict = {pn: p for pn, p in self.named_parameters()}# filter out those that do not require gradparam_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad}# create optim groups. Any parameters that is 2D will be weight decayed, otherwise no.# i.e. all weight tensors in matmuls + embeddings decay, all biases and layernorms don't.decay_params = [p for n, p in param_dict.items() if p.dim() >= 2]nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2]optim_groups = [{'params': decay_params, 'weight_decay': weight_decay},{'params': nodecay_params, 'weight_decay': 0.0}]num_decay_params = sum(p.numel() for p in decay_params)num_nodecay_params = sum(p.numel() for p in nodecay_params)print(f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters")print(f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters")# Create AdamW optimizer and use the fused version if it is availablefused_available = 'fused' in inspect.signature(torch.optim.AdamW).parametersuse_fused = fused_available and device_type == 'cuda'extra_args = dict(fused=True) if use_fused else dict()optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=betas, **extra_args)print(f"using fused AdamW: {use_fused}")return optimizer@torch.no_grad()def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None, block_size=512):for _ in range(max_new_tokens):# if the sequence context is growing too long we must crop it at block_sizeidx_cond = idx if idx.size(1) <= block_size else idx[:, -block_size:]# forward the model to get the logits for the index in the sequencelogits, _ = self(idx_cond)# pluck the logits at the final step and scale by desired temperaturelogits = logits / temperature# optionally crop the logits to only the top k optionsif top_k is not None:v, _ = torch.topk(logits, min(top_k, logits.size(-1)))logits[logits < v[:, [-1]]] = -float('Inf')# apply softmax to convert logits to (normalized) probabilitiesprobs = F.softmax(logits, dim=-1)# sample from the distributionidx_next = torch.multinomial(probs, num_samples=1)# append sampled index to the running sequence and continueidx = torch.cat((idx, idx_next), dim=1)return idx
模型训练
定义好模型之后,我们就可以开始训练了。
首先我们需要准备训练数据集。GPT 2采用的是webtext,网上的一些公开网页数据来进行训练。在Huggingface上面有对应的一个公开数据集。不过考虑到我们的资源有限,我这次还是采用GPT 1所用的bookcorpus数据集来训练。
以下代码是下载huggingface的数据集,并用GPT 2的tokenizer来进行编码:
from datasets import load_datasetfrom transformers import GPT2Tokenizerdataset = load_dataset("bookcorpusopen", split="train")block_size=513tokenizer = GPT2Tokenizer.from_pretrained("gpt2")def tokenize_function(examples):token_ids = [tokenizer(text) for text in examples["text"]]total_length = [len(t["input_ids"]) for t in token_ids]total_length = [(l//(block_size+1))*(block_size+1) for l in total_length]result = []label = [] for i in range(len(total_length)):result.extend([token_ids[i]["input_ids"][j:j+block_size+1] for j in range(0, total_length[i], block_size+1)])return {"token_ids": result} ds_test = ds['train'].select(range(10000)) tokenized_datasets = ds_test.map(tokenize_function, batched=True, num_proc=8, remove_columns=["title", "text"], batch_size=100) tokenized_datasets.save_to_disk("data/boocorpusopen_10000_512tokens")
GPT1采用的bookcorpus有7000多本书,huggingface的bookcorpusopen数据集有14000多本,这里我只采用了10000本书来构建数据集,对于每本书进行tokenizer转化后,每513个token写入为1条记录。这样我们在训练时,每条记录我们采用前1-512个token作为训练,取2-513个token作为label。
以下代码将读取我们处理好的数据集,并转化为pytorch的dataloader
from datasets import load_from_diskdataset = load_from_disk("data/boocorpusopen_10000_512tokens")dataset = dataset.with_format("torch")dataloader = DataLoader(dataset, batch_size=args.batch_size, shuffle=True, num_workers=4)
然后我们就可以实例化一个GPT 2的model并开始训练,具体的代码可以见repo https://github.com/gzroy/gpt2_torch.git 里面的train.py文件。
如果在本地显卡上训练,对应12层的网络结构需要30多G的显存,我的显卡是2080Ti,只有11G显存,因此只能指定6层decoder。我们可以在autodl上面租用一个40G显存的A100显卡,价格是3.45元每小时,在这个显卡上开启半精度进行训练,大约1个小时可以跑10000个迭代,batch大小为64。我总共训练了2小时,最终在训练集上的Loss值为3.5左右,准确度为35%,花费为7元。
生成文本
最后我们可以基于这个训练了1个小时的GPT 2模型来测试一下,看生成文本的效果如何,如以下代码:
from transformers import GPT2Tokenizerfrom model import GPT2import torchfrom torch.nn import functional as Fimport argparseif __name__ == '__main__':parser = argparse.ArgumentParser(description='gpt2 predict')parser.add_argument('--checkpoint_path', type=str, default='checkpoints/')parser.add_argument('--checkpoint_name', type=str, default='')parser.add_argument('--d_model', type=int, default=768)parser.add_argument('--block_size', type=int, default=512)parser.add_argument('--dff', type=int, default=768*4)parser.add_argument('--heads', type=int, default=12)parser.add_argument('--decoder_layers', type=int, default=6)parser.add_argument('--device', type=str, default='cuda')parser.add_argument('--input', type=str)parser.add_argument('--generate_len', type=int, default=100)parser.add_argument('--topk', type=int, default=5)args = parser.parse_args()tokenizer = GPT2Tokenizer.from_pretrained("gpt2")vocab_size = len(tokenizer.get_vocab())model = GPT2(vocab_size, args.d_model, args.block_size, 0, args.heads, args.dff, 0, 0, 0, args.decoder_layers)model.to(args.device)model = torch.compile(model)checkpoint = torch.load(args.checkpoint_path+args.checkpoint_name)model.load_state_dict(checkpoint['model_state_dict'])token_id = tokenizer.encode(args.input)input_data = torch.reshape(torch.tensor(token_id, device=args.device), [1,-1])predicted = model.generate(input_data, args.generate_len, 1.0, args.topk, args.block_size)print("Generated text:\n-------------------")print(tokenizer.decode(predicted.cpu().numpy()[0]))
运行以下命令,给定一个文本的开头,然后让模型生成200字看看:
python predict.py --checkpoint_name model_1.pt --input 'it was saturday night, the street' --generate_len 200 --topk 10
生成的文本如下:
it was saturday night, the street lights blared and the street lights flickered on. A few more houses were visible.The front door opened, and a large man stepped in and handed him one. He handed the man the keys and a small smile. It looked familiar, and then a little too familiar. The door was closed."Hey! You guys out there" />
可见生成的文本语法没有问题,内容上也比较连贯,上下文的逻辑也有关联。如果模型继续训练更长时间,相信生成文本的内容会更加好。