使用FastJson进行驼峰下划线相互转换写法及误区


PropertyNamingStrategy

有四种序列化方式。
CamelCase策略,Java对象属性:personId,序列化后属性:persionId – 实际只改了首字母 大写变小写
PascalCase策略,Java对象属性:personId,序列化后属性:PersonId – 实际只改了首字母 小写变大写
SnakeCase策略,Java对象属性:personId,序列化后属性:person_id –大写字母前加下划线
KebabCase策略,Java对象属性:personId,序列化后属性:person-id -大写字母前加减号

public enum PropertyNamingStrategy {CamelCase, //驼峰PascalCase, //SnakeCase, //大写字母前加下划线 KebabCase;public String translate(String propertyName) {switch (this) {case SnakeCase: {StringBuilder buf = new StringBuilder();for (int i = 0; i < propertyName.length(); ++i) {char ch = propertyName.charAt(i);if (ch >= 'A' && ch <= 'Z') {char ch_ucase = (char) (ch + 32);if (i > 0) {buf.append('_');}buf.append(ch_ucase);} else {buf.append(ch);}}return buf.toString();}case KebabCase: {StringBuilder buf = new StringBuilder();for (int i = 0; i < propertyName.length(); ++i) {char ch = propertyName.charAt(i);if (ch >= 'A' && ch <= 'Z') {char ch_ucase = (char) (ch + 32);if (i > 0) {buf.append('-');}buf.append(ch_ucase);} else {buf.append(ch);}}return buf.toString();}case PascalCase: {char ch = propertyName.charAt(0);if (ch >= 'a' && ch <= 'z') {char[] chars = propertyName.toCharArray();chars[0] -= 32;return new String(chars);}return propertyName;}case CamelCase: {char ch = propertyName.charAt(0);if (ch >= 'A' && ch <= 'Z') {char[] chars = propertyName.toCharArray();chars[0] += 32;return new String(chars);}return propertyName;}default:return propertyName;}}

发挥作用的是translate方法

指定序列化格式

了解了PropertyNamingStrategy后,看其是怎么发挥作用的,
阅读源码发现在buildBeanInfo时(注意是将bean转为json时构建json信息时,如果是map,JSONObject不会有这个转换)

if(propertyNamingStrategy != null && !fieldAnnotationAndNameExists){propertyName = propertyNamingStrategy.translate(propertyName);}

这里分别调用PropertyNamingStrategy对应的方法处理

常见误区
那么也就是说通过PropertyNamingStrategy的方式设置输出格式,只对javaBean有效,并且,至于转换结果,需要根据PropertyNamingStrategy#translate方法的内容具体分析
如果javaBean中的字段是用下划线间隔的,那么指定CamelCase进行序列化,也是无法转成驼峰的!
例如

Student student = new Student();student.setTest_name("test");SerializeConfig serializeConfig = new SerializeConfig();serializeConfig.setPropertyNamingStrategy(PropertyNamingStrategy.CamelCase);System.out.println(JSON.toJSONString(student,serializeConfig));

输出{test_name”:“test”},因为执行 PropertyNamingStrategy#translate的CamelCase,仅仅只是,判断如果首字母大写转成小写。并不能完成,下划线到驼峰的转换

 case CamelCase: {char ch = propertyName.charAt(0);if (ch >= 'A' && ch <= 'Z') {char[] chars = propertyName.toCharArray();chars[0] += 32;return new String(chars);}return propertyName;}

指定反序列化格式

智能匹配功能

fastjson反序列化时,是能自动下划线转驼峰的。这点是很方便的。,在反序列化时无论采用那种形式都能匹配成功并设置值

String str = "{'user_name':123}";User user = JSON.parseObject(str, User.class);System.out.println(user);

输出{userName=‘123’}

fastjson智能匹配处理过程

fastjson在进行反序列化的时候,对每一个json字段的key值解析时,会调用
com.alibaba.fastjson.parser.deserializer.JavaBeanDeserializer#parseField
这个方法

图片[1] - 使用FastJson进行驼峰下划线相互转换写法及误区 - MaxSSL

以上面的例子为例,通过debug打个断点看一下解析user_id时的处理逻辑。
此时这个方法中的key为user_id,object为要反序列化的结果对象,这个例子中就是FastJsonTestMain.UserInfo

public boolean parseField(DefaultJSONParser parser, String key, Object object, Type objectType,Map<String, Object> fieldValues, int[] setFlags) {JSONLexer lexer = parser.lexer; // xxx//是否禁用智能匹配;final int disableFieldSmartMatchMask = Feature.DisableFieldSmartMatch.mask;final int initStringFieldAsEmpty = Feature.InitStringFieldAsEmpty.mask;FieldDeserializer fieldDeserializer;if (lexer.isEnabled(disableFieldSmartMatchMask) || (this.beanInfo.parserFeatures & disableFieldSmartMatchMask) != 0) {fieldDeserializer = getFieldDeserializer(key);} else if (lexer.isEnabled(initStringFieldAsEmpty) || (this.beanInfo.parserFeatures & initStringFieldAsEmpty) != 0) {fieldDeserializer = smartMatch(key);} else {//进行智能匹配fieldDeserializer = smartMatch(key, setFlags);}***此处省略N多行***}

再看下核心的代码,智能匹配smartMatch

public FieldDeserializer smartMatch(String key, int[] setFlags) {if (key == null) {return null;}FieldDeserializer fieldDeserializer = getFieldDeserializer(key, setFlags);if (fieldDeserializer == null) {if (this.smartMatchHashArray == null) {long[] hashArray = new long[sortedFieldDeserializers.length];for (int i = 0; i < sortedFieldDeserializers.length; i++) {//java字段的nameHashCode,源码见下方hashArray[i] = sortedFieldDeserializers[i].fieldInfo.nameHashCode;}//获取出反序列化目标对象的字段名称hashcode值,并进行排序Arrays.sort(hashArray);this.smartMatchHashArray = hashArray;}// smartMatchHashArrayMappinglong smartKeyHash = TypeUtils.fnv1a_64_lower(key);//进行二分查找,判断是否找到int pos = Arrays.binarySearch(smartMatchHashArray, smartKeyHash);if (pos < 0) {//原始字段没有匹配到,用fnv1a_64_extract处理一下再次匹配long smartKeyHash1 = TypeUtils.fnv1a_64_extract(key);pos = Arrays.binarySearch(smartMatchHashArray, smartKeyHash1);}boolean is = false;if (pos < 0 && (is = key.startsWith("is"))) {//上面的操作后仍然没有匹配到,把is去掉后再次进行匹配smartKeyHash = TypeUtils.fnv1a_64_extract(key.substring(2));pos = Arrays.binarySearch(smartMatchHashArray, smartKeyHash);}if (pos >= 0) {//通过智能匹配字段匹配成功if (smartMatchHashArrayMapping == null) {short[] mapping = new short[smartMatchHashArray.length];Arrays.fill(mapping, (short) -1);for (int i = 0; i < sortedFieldDeserializers.length; i++) {int p = Arrays.binarySearch(smartMatchHashArray, sortedFieldDeserializers[i].fieldInfo.nameHashCode);if (p >= 0) {mapping[p] = (short) i;}}smartMatchHashArrayMapping = mapping;}int deserIndex = smartMatchHashArrayMapping[pos];if (deserIndex != -1) {if (!isSetFlag(deserIndex, setFlags)) {fieldDeserializer = sortedFieldDeserializers[deserIndex];}}}if (fieldDeserializer != null) {FieldInfo fieldInfo = fieldDeserializer.fieldInfo;if ((fieldInfo.parserFeatures & Feature.DisableFieldSmartMatch.mask) != 0) {return null;}Class fieldClass = fieldInfo.fieldClass;if (is && (fieldClass != boolean.class && fieldClass != Boolean.class)) {fieldDeserializer = null;}}}return fieldDeserializer;}

通过上面的smartMatch方法可以看出,fastjson中之所以能做到下划线自动转驼峰,主要还是因为在进行字段对比时,使用了fnv1a_64_lower和fnv1a_64_extract方法进行了处理。
fnv1a_64_extract方法源码:

public static long fnv1a_64_extract(String key) {long hashCode = fnv1a_64_magic_hashcode;for (int i = 0; i < key.length(); ++i) {char ch = key.charAt(i);//去掉下划线和减号if (ch == '_' || ch == '-') {continue;}//大写转小写if (ch >= 'A' && ch <= 'Z') {ch = (char) (ch + 32);}hashCode ^= ch;hashCode *= fnv1a_64_magic_prime;}return hashCode;}

从源码可以看出,fnv1a_64_extract方法主要做了这个事:
去掉下划线、减号,并大写转小写
总结
fastjson中字段智能匹配的原理是在字段匹配时,使用了TypeUtils.fnv1a_64_lower方法对字段进行全体转小写处理。
之后再用TypeUtils.fnv1a_64_extract方法对json字段进行去掉”_“和”-“符号,再全体转小写处理。
如果上面的操作仍然没有匹配成功,会再进行一次去掉json字段中的is再次进行匹配。
如果上面的操作仍然没有匹配成功,会再进行一次去掉json字段中的is再次进行匹配。

关闭智能匹配的情况

智能匹配时默认开启的,需要手动关闭,看这个例子

 String str = "{'user_name':123}";ParserConfig parserConfig = new ParserConfig();parserConfig.propertyNamingStrategy =PropertyNamingStrategy.SnakeCase;User user = JSON.parseObject(str, User.class, parserConfig,Feature.DisableFieldSmartMatch);System.out.println(user);

输出{userName=‘null’}
那么这种情况如何完成下划线到驼峰的转换
那么就需要使用parseConfig了

String str = "{'user_name':123}";ParserConfig parserConfig = new ParserConfig();parserConfig.propertyNamingStrategy =PropertyNamingStrategy.SnakeCase;User user = JSON.parseObject(str, User.class,parserConfig,Feature.DisableFieldSmartMatch);System.out.println(user);

那么此时PropertyNamingStrategy.SnakeCase又是如何发挥作用的?
断点PropertyNamingStrategy#translate方法
发现在构建JavaBeanDeserializer时

public JavaBeanDeserializer(ParserConfig config, Class<" />> clazz, Type type){this(config //, JavaBeanInfo.build(clazz, type, config.propertyNamingStrategy, config.fieldBased, config.compatibleWithJavaBean, config.isJacksonCompatible()));}
if (propertyNamingStrategy != null) {propertyName = propertyNamingStrategy.translate(propertyName);}add(fieldList, new FieldInfo(propertyName, method, field, clazz, type, ordinal, serialzeFeatures, parserFeatures,annotation, fieldAnnotation, null, genericInfo));

会根据配置对propertyName进行translate。转换成对应格式的属性名称

常见误区:
与序列化误区相同,如果是map,JSONObject不会有这个转换,并且转换结果需要参照translate方方法逻辑来看
值的注意的是,JSONObject的toJavaObject方法,智能匹配会生效。可以放心得进行下划线和驼峰得互相转换

String str = "{'user_name':123}";JSONObject object = (JSONObject) JSON.parse(str);System.out.println(object);User user = object.toJavaObject(User.class);System.out.println(user);
© 版权声明
THE END
喜欢就支持一下吧
点赞0 分享