目标学习任务
检测出已经分割出的图像的分类
2 使用pytorch
pytorch 非常简单就可以做到训练和加载
2.1 准备数据
如上图所示,用来训练的文件放在了train中,验证的文件放在val中,train.txt 和 val.txt 分别放文件名称和分类类别,然后我们在代码中写名字就行
里面我就为了做一个例子,放了两种文件,1 是 卡宴保时捷,2 是工程车,如下图所示
train.txt 如下图所示
val.txt 也是同样如此
3 show me the code
3.1 装载数据类
新增一个loaddata.py 文件
import torchimport randomfrom PIL import Imageclass LoadData(torch.utils.data.Dataset):def __init__(self, root, datatxt, transform=None, target_transform=None):super(LoadData, self).__init__()file_txt = open(datatxt,'r')imgs = []for line in file_txt:line = line.rstrip()words = line.split('|')imgs.append((words[0], words[1]))self.imgs = imgsself.root = rootself.transform = transformself.target_transform = target_transformdef __getitem__(self, index):random.shuffle(self.imgs)name, label = self.imgs[index]img = Image.open(self.root + name).convert('RGB')if self.transform is not None:img = self.transform(img)label = int(label)return img, labeldef __len__(self):return len(self.imgs)
LoadData 类是从torch.util.data.Dataset上继承下来的,需要一个transform类输入,实际上就是转化大小
3.2 网络类
定义一个网络类,只有两个输出
import torch.nn as nnimport torch.nn.functional as Fimport torch.optim as optimclass Net(nn.Module):def __init__(self):super(Net, self).__init__()self.conv1 = nn.Conv2d(3, 16, 3)self.pool = nn.MaxPool2d((2, 2))self.pool1 = nn.MaxPool2d((2, 2))self.conv2 = nn.Conv2d(16, 32, 3)self.fc1 = nn.Linear(36*36*32, 120)self.fc2 = nn.Linear(120, 60)self.fc3 = nn.Linear(60, 2)def forward(self, x):x = self.pool(F.relu(self.conv1(x)))x = self.pool1(F.relu(self.conv2(x)))x = x.view(-1, 36*36*32)x = F.relu(self.fc1(x))x = F.relu(self.fc2(x))x = self.fc3(x)return x
3.3 主要流程
import torchfrom PIL import Imageimport torchvision.transforms as transformsimport matplotlib.pyplot as pltimport numpy as npimport torch.nn as nnimport torch.optim as optimfrom loaddata import LoadDatafrom modelnet import Netdevice = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")print(device)classes = ['工程车','卡宴']transform = transforms.Compose( [transforms.Resize((152, 152)),transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])train_data=LoadData(root ='./data/train/', datatxt='./data/'+'train.txt', transform=transform)test_data=LoadData(root ='./data/val/',datatxt='./data/'+'val.txt',transform=transform)train_loader = torch.utils.data.DataLoader(dataset=train_data, batch_size=2, shuffle=True)test_loader = torch.utils.data.DataLoader(dataset=test_data, batch_size=2)def imshow(img): img = img / 2 + 0.5 # unnormalize npimg = img.numpy() plt.imshow(np.transpose(npimg, (1, 2, 0))) plt.show()net = Net()criterion = nn.CrossEntropyLoss()optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)for epoch in range(10): running_loss = 0.0 for i, data in enumerate(train_loader, 0): inputs, labels = data optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() if i % 200 == 0: print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 200)) running_loss = 0.0print('Finished Training')PATH = './test.pth'torch.save(net.state_dict(), PATH)net = Net()net.load_state_dict(torch.load(PATH))correct = 0total = 0with torch.no_grad(): for data in test_loader: images, labels = data outputs = net(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item()print('Accuracy of the network on the test images: %d %%' % ( 100 * correct / total))
如上图所示,epoch为5时精确度为80%,为10时精确度为100%,各位不要当真,这这是训练集里面的数据集做识别,并不是真的精确度。
3.4 识别代码
import torchfrom PIL import Imageimport torchvision.transforms as transformsimport matplotlib.pyplot as pltimport numpy as npimport torch.nn as nnfrom modelnet import NetPATH = './test.pth'transform = transforms.Compose([transforms.Resize((152, 152)),transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])net = Net()net.load_state_dict(torch.load(PATH))img = Image.open("./data/val/102.jpg").convert('RGB')img = transform(img)with torch.no_grad():outputs = net(img)_, predicted = torch.max(outputs.data, 1)print("the 102 img lable is ",predicted)
如下图所示,102 为卡宴识别为1 正确
后记
后面我们准备是从视频中传递过来图像进行分类,同时使用我们的工具VT解码视频后进行内存共享来生成图像,而不是从磁盘加载。要用到我们的c++ 解码工具,和pytorch进行交互
以下是第一篇文章:视频与AI,与进程交互(一)
VT 工具准备开源,端午节节后开出来