文章目录
- 前言
- CIFAR10简介
- Backbone选择
- 训练+测试
- 训练环境及超参设置
- 完整代码
- 部分测试结果
- 完整工程文件
- Reference
前言
分享一下本人去年入门深度学习时,在CIFAR10数据集上做的图像分类任务,使用了多个主流的backbone网络,希望可以为同样想入门深度学习的同志们,提供一个方便上手、容易理解的参考教程。
CIFAR10简介
CIFAR-10数据集是图像分类领域经典的数据集,由 Hinton 的学生 Alex Krizhevsky 和 Ilya Sutskever 整理得到,一共包含10个类别的 RGB彩色图片:飞机( airplane )、汽车( automobile )、鸟类( bird )、猫( cat )、鹿( deer )、狗( dog )、蛙类( frog )、马( horse )、船( ship )和卡车( truck ),图片的尺寸为 32×32 ,数据集中一共有 50000 张训练圄片和 10000 张测试图片。 CIFAR-10 的图片样例如图所示
Pytorch中提供了如下命令可以直接将CIFAR10数据集下载到本地:
import torchvisiondataset = torchvision.datasets.CIFAR10(root, train=True, download=True, transform)
- root:数据集加载到本地的路径
- train=True:True表示加载训练集,False加载测试集
- download=True:True表示加载数据集到root,若数据集已经存在,则不会再加载
- transform:数据增强
这里分享一个加载CIFAR10数据集的完整代码:
# 设置数据增强print('==> Preparing data..')transform_train = transforms.Compose([transforms.RandomCrop(32, padding=4),transforms.RandomHorizontalFlip(),transforms.ToTensor(),transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),])transform_test = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),])# 加载CIFAR10数据集trainset = torchvision.datasets.CIFAR10(root=opt.data, train=True, download=True, transform=transform_train)trainloader = torch.utils.data.DataLoader(trainset, batch_size=opt.batch_size, shuffle=True, num_workers=2)testset = torchvision.datasets.CIFAR10(root=opt.data, train=False, download=True, transform=transform_test)testloader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=False, num_workers=2)
Backbone选择
本文主要尝试了以下几个主流的backbone网络,并在CIFAR10上实现了图像分类任务:
- LetNet
- AlexNet
- VGG
- GoogLeNet(InceptionNet)
- ResNet
- DenseNet
- ResNeXt
- SENet
- MobileNetv2-v3
- ShuffleNetv2
- EfficientNetB0
- Darknet53
- CSPDarknet53
这里放上测试结果最好的ResNet模块的构建代码,其他代码放到最后完整工程backbone文件夹中:
"""pytorch实现ResNet50、ResNet101和ResNet152:"""import torchimport torch.nn as nnimport torchvisionimport torch.nn.functional as F# conv1 7 x 7 64 stride=2def Conv1(channel_in, channel_out, stride=2):return nn.Sequential(nn.Conv2d(channel_in,channel_out,kernel_size=7,stride=stride,padding=3,bias=False),nn.BatchNorm2d(channel_out),# 会改变输入数据的值# 节省反复申请与释放内存的空间与时间# 只是将原来的地址传递,效率更好nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=3, stride=stride, padding=1))# 构建ResNet18-34的网络基础模块class BasicBlock(nn.Module):expansion = 1def __init__(self, in_planes, planes, stride=1):super(BasicBlock, self).__init__()self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)self.bn1 = nn.BatchNorm2d(planes)self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)self.bn2 = nn.BatchNorm2d(planes)self.shortcut = nn.Sequential()if stride != 1 or in_planes != self.expansion * planes:self.shortcut = nn.Sequential(nn.Conv2d(in_planes, self.expansion * planes,kernel_size=1, stride=stride, bias=False),nn.BatchNorm2d(self.expansion * planes))def forward(self, x):out = F.relu(self.bn1(self.conv1(x)))out = self.bn2(self.conv2(out))out += self.shortcut(x)out = F.relu(out)return out# 构建ResNet50-101-152的网络基础模块class Bottleneck(nn.Module):expansion = 4def __init__(self, in_planes, planes, stride=1):super(Bottleneck, self).__init__()# 构建 1x1, 3x3, 1x1的核心卷积块self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)self.bn1 = nn.BatchNorm2d(planes)self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)self.bn2 = nn.BatchNorm2d(planes)self.conv3 = nn.Conv2d(planes, self.expansion * planes, kernel_size=1, bias=False)self.bn3 = nn.BatchNorm2d(self.expansion * planes)# 采用1x1的kernel,构建shout cut# 注意这里除了第一个bottleblock之外,都需要下采样,所以步长要设置为stride=2self.shortcut = nn.Sequential()if stride != 1 or in_planes != self.expansion * planes:self.shortcut = nn.Sequential(nn.Conv2d(in_planes, self.expansion * planes,kernel_size=1, stride=stride, bias=False),nn.BatchNorm2d(self.expansion * planes))def forward(self, x):out = F.relu(self.bn1(self.conv1(x)))out = F.relu(self.bn2(self.conv2(out)))out = self.bn3(self.conv3(out))out += self.shortcut(x)out = F.relu(out)return out# 搭建ResNet模板块class ResNet(nn.Module):def __init__(self, block, num_blocks, num_classes=10):super(ResNet, self).__init__()self.in_planes = 64self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)self.bn1 = nn.BatchNorm2d(64)# 逐层搭建ResNetself.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)self.linear = nn.Linear(512 * block.expansion, num_classes)# 参数初始化# for m in self.modules():# if isinstance(m, nn.Conv2d):# nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')# elif isinstance(m, nn.BatchNorm2d):# nn.init.constant_(m.weight, 1)# nn.init.constant_(m.bias, 0)def _make_layer(self, block, planes, num_blocks, stride):strides = [stride] + [1] * (num_blocks - 1)# layers = [ ] 是一个列表# 通过下面的for循环遍历配置列表,可以得到一个由 卷积操作、池化操作等 组成的一个列表layers# return nn.Sequential(*layers),即通过nn.Sequential函数将列表通过非关键字参数的形式传入(列表layers前有一个星号)layers = []for stride in strides:layers.append(block(self.in_planes, planes, stride))self.in_planes = planes * block.expansionreturn nn.Sequential(*layers)def forward(self, x):out = F.relu(self.bn1(self.conv1(x)))out = self.layer1(out)out = self.layer2(out)out = self.layer3(out)out = self.layer4(out)out = F.avg_pool2d(out, 4)out = out.view(out.size(0), -1)out = self.linear(out)return outdef ResNet18():return ResNet(BasicBlock, [2, 2, 2, 2])def ResNet34():return ResNet(BasicBlock, [3, 4, 6, 3])def ResNet50():return ResNet(Bottleneck, [3, 4, 6, 3])def ResNet101():return ResNet(Bottleneck, [3, 4, 23, 3])def ResNet152():return ResNet(Bottleneck, [3, 8, 36, 3])# 测试# if __name__ == '__main__':# model = ResNet50()# print(model)## input = torch.randn(1, 3, 32, 32)# out = model(input)# print(out.shape)
训练+测试
训练环境及超参设置
本文的训练环境和超参数设置如下:
- 1块1080 Ti GPU
- epoch为100
- batch-size为128
- 优化器:SGD
- 学习率:余弦退火有序调整学习率
主要步骤如下:
- 加载数据集
- 将数据集加载到本地
- 按batch-size加载到dataLoader
- 设置相关参数
- 指定GPU
- 训练相关参数
- 断点续训
- 模型保存参数
- 设置优化器
- 设置学习率
- 循环每个epoch
- 开启训练
- 开启测试
- 学习率调整
- 数据可视化
- 打印结果
完整代码
'''Train CIFAR10 with PyTorch.'''import torchvision.transforms as transformsimport timeimport torchimport torchvisionimport torch.nn as nnimport torch.optim as optimimport torch.backends.cudnn as cudnnfrom torch.utils.data import DataLoaderimport matplotlib.pyplot as pltimport osimport argparse# 导入模型from backbones.ResNet import ResNet18# 指定GPUos.environ['CUDA_VISIBLE_DEVICES'] = '1'# 用于计算GPU运行时间def time_sync():# pytorch-accurate timeif torch.cuda.is_available():torch.cuda.synchronize()return time.time()# Trainingdef train(epoch):model.train()train_loss = 0correct = 0total = 0train_acc = 0# 开始迭代每个batch中的数据for batch_idx, (inputs, targets) in enumerate(trainloader):# inputs:[b,3,32,32], targets:[b]# train_outputs:[b,10]inputs, targets = inputs.to(device), targets.to(device)# print(inputs.shape)optimizer.zero_grad()outputs = model(inputs)loss = criterion(outputs, targets)loss.backward()optimizer.step()# 计算损失train_loss += loss.item()_, predicted = outputs.max(1)total += targets.size(0)correct += predicted.eq(targets).sum().item()# 计算准确率train_acc = correct / total# 每训练100个batch打印一次训练集的loss和准确率if (batch_idx + 1) % 100 == 0:print('[INFO] Epoch-{}-Batch-{}: Train: Loss-{:.4f}, Accuracy-{:.4f}'.format(epoch + 1, batch_idx + 1, loss.item(), train_acc))# 计算每个epoch内训练集的acctotal_train_acc.append(train_acc)# Testingdef test(epoch, ckpt):global best_accmodel.eval()test_loss = 0correct = 0total = 0test_acc = 0with torch.no_grad():for batch_idx, (inputs, targets) in enumerate(testloader):inputs, targets = inputs.to(device), targets.to(device)outputs = model(inputs)loss = criterion(outputs, targets)test_loss += loss.item()_, predicted = outputs.max(1)total += targets.size(0)correct += predicted.eq(targets).sum().item()test_acc = correct / totalprint('[INFO] Epoch-{}-Test Accurancy: {:.3f}'.format(epoch + 1, test_acc), '\n')total_test_acc.append(test_acc)# 保存权重文件acc = 100. * correct / totalif acc > best_acc:print('Saving..')state = {'net': model.state_dict(),'acc': acc,'epoch': epoch,}if not os.path.isdir('checkpoint'):os.mkdir('checkpoint')torch.save(state, ckpt)best_acc = accif __name__ == '__main__':# 设置超参parser = argparse.ArgumentParser(description='PyTorch CIFAR10 Training')parser.add_argument('--epochs', type=int, default=100)parser.add_argument('--batch_size', type=int, default=128)parser.add_argument('--data', type=str, default='cifar10')parser.add_argument('--T_max', type=int, default=100)parser.add_argument('--lr', default=0.1, type=float, help='learning rate')parser.add_argument('--resume', '-r', action='store_true', help='resume from checkpoint')parser.add_argument('--checkpoint', type=str, default='checkpoint/ResNet18-CIFAR10.pth')opt = parser.parse_args()# 设置相关参数device = torch.device('cuda:0') if torch.cuda.is_available() else 'cpu'best_acc = 0# best test accuracystart_epoch = 0# start from epoch 0 or last checkpoint epochclasses = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')# 设置数据增强print('==> Preparing data..')transform_train = transforms.Compose([transforms.RandomCrop(32, padding=4),transforms.RandomHorizontalFlip(),transforms.ToTensor(),transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),])transform_test = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),])# 加载CIFAR10数据集trainset = torchvision.datasets.CIFAR10(root=opt.data, train=True, download=True, transform=transform_train)trainloader = torch.utils.data.DataLoader(trainset, batch_size=opt.batch_size, shuffle=True, num_workers=2)testset = torchvision.datasets.CIFAR10(root=opt.data, train=False, download=True, transform=transform_test)testloader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=False, num_workers=2)# print(trainloader.dataset.shape)# 加载模型print('==> Building model..')model = ResNet18().to(device)# DP训练if device == 'cuda':model = torch.nn.DataParallel(model)cudnn.benchmark = True# 加载之前训练的参数if opt.resume:# Load checkpoint.print('==> Resuming from checkpoint..')assert os.path.isdir('checkpoint'), 'Error: no checkpoint directory found!'checkpoint = torch.load(opt.checkpoint)model.load_state_dict(checkpoint['net'])best_acc = checkpoint['acc']start_epoch = checkpoint['epoch']# 设置损失函数与优化器criterion = nn.CrossEntropyLoss()optimizer = optim.SGD(model.parameters(), lr=opt.lr,momentum=0.9, weight_decay=5e-4)# 余弦退火有序调整学习率scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=opt.T_max)# ReduceLROnPlateau(自适应调整学习率)# scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.1, patience=10)# 记录training和testing的acctotal_test_acc = []total_train_acc = []# 记录训练时间tic = time_sync()# 开始训练for epoch in range(opt.epochs):train(epoch)test(epoch, opt.checkpoint)# 动态调整学习率scheduler.step()# ReduceLROnPlateau(自适应调整学习率)# scheduler.step(loss_val)# 数据可视化plt.figure()plt.plot(range(opt.epochs), total_train_acc, label='Train Accurancy')plt.plot(range(opt.epochs), total_test_acc, label='Test Accurancy')plt.xlabel('Epoch')plt.ylabel('Accurancy')plt.title('ResNet18-CIFAR10-Accurancy')plt.legend()plt.savefig('output/ResNet18-CIFAR10-Accurancy.jpg')# 自动保存plot出来的图片plt.show()# 输出best_accprint(f'Best Acc: {best_acc * 100}%')toc = time_sync()# 计算本次运行时间t = (toc - tic) / 3600print(f'Training Done. ({t:.3f}s)')
部分测试结果
Backbone | Best Acc |
---|---|
MobileNetv2 | 93.37% |
VGG16 | 93.80% |
DenseNet121 | 94.55% |
GoogLeNet | 95.02% |
ResNeXt29_32×4d | 95.18% |
ResNet50 | 95.20% |
SENet18 | 95.22% |
ResNet18 | 95.23% |
完整工程文件
Pytorch实现CIFAR10图像分类任务测试集准确率达95%
Reference
CIFAR-10 数据集
深度学习入门基础教程(二) CNN做CIFAR10数据集图像分类 pytorch版代码
Pytorch CIFAR10 图像分类篇 汇总
pytorch-cifar:使用PyTorch在CIFAR10上为95.47%
© 版权声明
文章版权归作者所有,未经允许请勿转载。
THE END