欢迎访问我的GitHub

这里分类和汇总了欣宸的全部原创(含配套源码):https://github.com/zq2599/blog_demos

本篇概览

  • 本文是《JavaCV人脸识别三部曲》的第二篇,前文《视频中的人脸保存为图片》咱们借助摄像头为两位群众演员生成大量人脸照片,如下图,群众演员A的照片保存在E:\temp\202112\18\001\man,B的照片保存在E:\temp\202112\18\001\woman
  • 照片准备好,并且每张照片的身份都已确定,本篇要做的就是用上述照片生成模型文件,今后新的人脸就可以中这个模型来检查了
  • 关于训练,可以用下图来表示,一共六张照片两个类别,训练完成后得到模型文件faceRecognizer.xml

编码

  • 训练的代码很简单,在一个java文件中搞定吧,simple-grab-push是整个《JavaCV的摄像头实战》系列一直再用的工程,现在该工程中新增文件TrainFromDirectory.java,完整代码如下,有几处要注意的地方稍后提到:
package com.bolingcavalry.grabpush.extend;import com.bolingcavalry.grabpush.Constants;import org.bytedeco.opencv.global.opencv_imgcodecs;import org.bytedeco.opencv.opencv_core.Mat;import org.bytedeco.opencv.opencv_core.MatVector;import org.bytedeco.opencv.opencv_core.Size;import org.bytedeco.opencv.opencv_face.FaceRecognizer;import org.bytedeco.opencv.opencv_face.FisherFaceRecognizer;import java.io.File;import java.io.IOException;import java.nio.IntBuffer;import java.util.LinkedList;import java.util.List;import static org.bytedeco.opencv.global.opencv_core.CV_32SC1;import static org.bytedeco.opencv.global.opencv_imgcodecs.IMREAD_GRAYSCALE;import static org.bytedeco.opencv.global.opencv_imgproc.resize;/** * @author willzhao * @version 1.0 * @description 训练 * @date 2021/12/12 18:26 */public class TrainFromDirectory {    /**     * 从指定目录下     * @param dirs     * @param outputPath     * @throws IOException     */    private void train(String[] dirs, String outputPath) throws IOException {        int totalImageNums = 0;        // 统计每个路径下的照片数,加在一起就是照片总数        for(String dir : dirs) {            List files = getAllFilePath(dir);            totalImageNums += files.size();        }        System.out.println("total : " + totalImageNums);        // 这里用来保存每一张照片的序号,和照片的Mat对象        MatVector imageIndexMatMap = new MatVector(totalImageNums);        Mat lables = new Mat(totalImageNums, 1, CV_32SC1);        // 这里用来保存每一张照片的序号,和照片的类别        IntBuffer lablesBuf = lables.createBuffer();        // 类别序号,从1开始,dirs中的每个目录就是一个类别        int kindIndex = 1;        // 照片序号,从0开始        int imageIndex = 0;        // 每个目录下的照片都遍历        for(String dir : dirs) {            // 得到当前目录下所有照片的绝对路径            List files = getAllFilePath(dir);            // 处理一个目录下的每张照片,它们的序号不同,类别相同            for(String file : files) {                // imageIndexMatMap放的是照片的序号和Mat对象                imageIndexMatMap.put(imageIndex, read(file));                // bablesBuf放的是照片序号和类别                lablesBuf.put(imageIndex, kindIndex);                // 照片序号加一                imageIndex++;            }            // 每当遍历完一个目录,才会将类别加一            kindIndex++;        }        // 实例化人脸识别类        FaceRecognizer faceRecognizer = FisherFaceRecognizer.create();        // 训练,入参就是图片集合和分类集合        faceRecognizer.train(imageIndexMatMap, lables);        // 训练完成后,模型保存在指定位置        faceRecognizer.save(outputPath);        //释放资源        faceRecognizer.close();    }    /**     * 读取指定图片的灰度图,调整为指定大小     * @param path     * @return     */    private static Mat read(String path) {        Mat faceMat = opencv_imgcodecs.imread(path,IMREAD_GRAYSCALE);        resize(faceMat, faceMat, new Size(Constants.RESIZE_WIDTH, Constants.RESIZE_HEIGHT));        return faceMat;    }    /**     * 把指定路径下所有文件的绝对路径放入list集合中返回     * @param path     * @return     */    public static List getAllFilePath(String path) {        List paths = new LinkedList();        File file = new File(path);        if (file.exists()) {            // 列出该目录下的所有文件            File[] files = file.listFiles();            for (File f : files) {                if (!f.isDirectory()) {                    // 把每个文件的绝对路径都放在list中                    paths.add(f.getAbsolutePath());                }            }        }        return paths;    }    public static void main(String[] args) throws IOException {        String base = "E:\\temp\\202112\\18\\001\\";        // 存储图片的两个目录        // man目录下保存了群众演员A的所有人脸照片,        // woman目录下保存了群众演员B的所有人脸照片        String[] dirs = {base + "man", base + "woman"};        // 开始训练,并指定模型输出位置        new TrainFromDirectory().train(dirs, base + "faceRecognizer.xml");    }}
  • 上述代码有以下几处要注意:
  1. 静态方法read用于将图片转为Mat
  2. 静态方法getAllFilePath可以遍历指定目录下的所有文件,把它们的绝对路径返回
  3. train一共获取了man和woman两个目录下的照片,man目录下的照片的类别是1,women目录下的照片类别是2
  4. 识别类是FisherFaceRecognizer,现在的训练和下一篇的识别都用这个类

执行

  • 运行main方法,待执行完成后,如下图,可见目录E:\temp\202112\18\001下已经生成模型文件faceRecognizer.xml
  • 至此,本篇任务已完成,下一篇进入终极实战,用本篇训练的模型识别摄像头中的人脸,并把识别结果展示在预览页面上;

源码下载

  • 《JavaCV的摄像头实战》的完整源码可在GitHub下载到,地址和链接信息如下表所示(https://github.com/zq2599/blog_demos):
名称链接备注
项目主页https://github.com/zq2599/blog_demos该项目在GitHub上的主页
git仓库地址(https)https://github.com/zq2599/blog_demos.git该项目源码的仓库地址,https协议
git仓库地址(ssh)git@github.com:zq2599/blog_demos.git该项目源码的仓库地址,ssh协议
  • 这个git项目中有多个文件夹,本篇的源码在javacv-tutorials文件夹下,如下图红框所示:
  • javacv-tutorials里面有多个子工程,《JavaCV的摄像头实战》系列的代码在simple-grab-push工程下:

欢迎关注博客园:程序员欣宸

学习路上,你不孤单,欣宸原创一路相伴…