# 批量创建Excelimportxlwings# xw.App(visible=True,add_book=True)会打开Excel,且不会自动关闭#xw.App(visible=True,add_book=True)会打开Excel,但一晃就自动关闭了app = xlwings.App(visible=True, add_book=False)for language in ['Java', 'Python', 'C#', 'Vue', "JavaScript"]:workbook = app.books.add()workbook.save(f"./畅销开发语言--{language}.xlsx")
# 批量打开Excelimport osimportxlwings as xwapp = xw.App(visible=True,add_book=False)# os.listdir(path)列出指定目录下的内容for file inos.listdir("."):if file.endswith('.xlsx') or file.endswith('.xlsx'):app.books.open(file)
# 批量重命名工作表import xlwings as xwapp = xw.App(visible=False, add_book=False)workbook = app.books.open("畅销开发语言--Python.xlsx")for sheet in workbook.sheets:sheet.name = sheet.name.replace('Sheet', 'ZEN')workbook.save()app.quit()
#合并Excel文件import pandas as pdimport osdata_list = []for filename in os.listdir('.'):if filename.startswith('畅销开发语言--') and filename.endswith('.xlsx'):# pd.read_excel("xx.xlsx", sheet_name=None)# sheet_name 默认值0 ,也就是默认打开Excel表中第一个工作簿data_list.append(pd.read_excel(filename)) data_all = pd.concat(data_list)data_all.to_excel("合并表.xlsx", index=False)
# 把一个Excel的所有工作表合并,且结果插入第一个位置# 只是把其它sheet表复制到首个,并没有汇总。import pandas as pdimport osimportxlwings as xw# pd.read_excel("xx.xlsx", sheet_name=None)# sheet_name 默认值0 ,也就是默认打开Excel表中第一个工作簿# sheet_name=None 打开所有sheet 工作簿data_list = pd.read_excel("xxx.xlsx", sheet_name=None)print(data_list)data_all = pd.concat(data_list.values())app = xw.App(visible=False, add_book=False)workbook = app.books.open("xxx.xlsx")workbook.sheets.add("汇总表", before=workbook.sheets[0])workbook.sheets["汇总表"].range("A1").options(index=False).value = data_allworkbook.save()workbook.close()app.quit()
#把Excel 工作表 拆分多个Excel文件按course 列拆分#Excel 列 course Totalimport pandas as pddata_list = pd.read_excel("xxx.xlsx", sheet_name=0)courses = data_list["course"].unique()for course in courses:data_single = data_list[data_list["course"] == course]data_single.to_excel(f"拆分数据-{course}.xlsx")
# 批量合并拆分Excelimport pandas as pd#读取excel所有工作表#此处的Excel工作表有 采购日期采购物品采购数量采购金额data_list = pd.read_excel("A.xlsx", sheet_name=None, parse_dates=False)# print(data_list.keys())#把多个工作表合并在一起# 注意是 values(),只合并sheet里面信息, 如果不加,也会有sheet的名称data_all = pd.concat(data_list.values())excel_writer = pd.ExcelWriter('采购表-按采购物品.xlsx', date_format="YYYY_MM_DD")for product, data_all in data_all.groupby("采购物品"):data_all.to_excel(excel_writer, product, index=False)excel_writer.close()
顺序不变,是可以的
如果李四和王五两行换一下,就不对了,
import xlwings as xwapp = xw.App(visible=True, add_book=False)data = app.books.open("A.xlsx")data_back = app.books.open("A - 副本.xlsx")for cell in data.sheets[0].range("A1").expand():# cell.address就是ExcelA1,B1 单元格地址back_cell = data_back.sheets[0].range(cell.address)if cell.value != back_cell.value:cell.color = back_cell.color = (255, 0, 0)data.save()data.close()data_back.save()data_back.close()app.quit()
#把文件AA下面所有Excel文件,规格表中规格列拆分三列,同时删除规格列import xlwings as xwimport pandas as pdimport osapp = xw.App(visible=False, add_book=False)for fname in os.listdir('AA'):if fname.endswith('.xlsx'):workbook = app.books.open(os.path.join('AA', fname))worksheet = workbook.sheets["规格表"]df = worksheet.range("A1").options(pd.DataFrame, expand='table').valueworksheet.range("A1").options(pd.DataFrame) split_columns = df["规格"].str.split("*", expand=True)df["长"] = split_columns[0]df["宽"] = split_columns[1]df["高"] = split_columns[2]# inplace原地df.drop("规格", inplace=True)worksheet.range("A1").value = dfworkbook.save()app.quit()
# 把A.xlsx的所有sheet中物品名称列,获取,并写入另外一个Excel中import pandas as pddf_list = pd.read_excel("A.xlsx",sheet_name=None)df_all = pd.concat(df_list.values())df_names = pd.DataFrame(data={"物品名称:":list(df_all["物品名称"].unique())})df_names.to_excel("Result.xlsx",index=False)
#批量分类统计import pandas as pdimport xlwings as xwimport osapp = xw.App(visible=False, add_book=False)for file in os.listdir("List"):if file.endswith(".xlsx") and not file.startswith("~$"):workbook = app.books.open(f"List/{file}")#第一个sheet表worksheet = workbook.sheets[0]# 将A1转换DataFrame对象df = worksheet.range("A1").options(pd.DataFrame, expand='table').value# 把GDP数据类型设置Floatdf["GDP"] = df["GDP"].astype(float)df_agg = df.groupby("城市")["GDP"].sum()#默认是按行worksheet.range("F1").value = df_aggworkbook.save()workbook.close()app.quit()
结果
#实现多个Excel vlookupimport pandas as pdimport xlwings as xwimport osapp = xw.App(visible=False, add_book=False)workbook = app.books.open("GDP.xlsx")df_total = workbook.sheets[0].range("A1").options(pd.DataFrame, expand='table', index=False).valuedf_city_list = []for file in os.listdir("List"):if file.endswith(".xlsx") and not file.startswith("~$") and "GDP" in file:workbook_list = app.books.open(f"List/{file}")#第一个sheet表df_city = workbook_list.sheets[0].range("A1").options(pd.DataFrame, expand='table', index=False).valuedf_city["省份"] = file.replace("GDP.xlsx", "")df_city_list.append(df_city)workbook_list.close()df_city_all = pd.concat(df_city_list)# 把GDP数据类型设置Float# left、right:需要连接的两个DataFrame或Series,一左一右# left_on:左表的连接键字段# # right_on:右表的连接键字段df_merge = pd.merge(left=df_total,right=df_city_all,left_on=["省份", "城市"],right_on=["省份", "城市"])df_merge["GDP"]=df_merge["GDP1"]df_merge.drop(columns="GDP1", inplace=True)workbook.sheets[0].range("A1").options(index=False).value = df_mergeelse:continueworkbook.save()workbook.close()app.quit()
import pandas as pdimport xlwings as xwimport osapp = xw.App(visible=False, add_book=False)data_list = []for file in os.listdir("List"):if file.endswith(".xlsx"):workbook = app.books.open(f"List/{file}")df_list = workbook.sheets[0].range("A1").options(pd.DataFrame, expand='table').valuedf_list["品牌"] = file.replace("手机.xlsx","")data_list.append(df_list)workbook.close()# if 之间的代码可以简写这样df = pd.read_excel(f"List/{file}")df["品牌"]=file.replace("手机.xlsx","")print(df)data_list.append(df)def compute(df_sub):return pd.Series({"总和": round(df_sub["售价"].sum(), 2),"最小": round(df_sub["售价"].min(), 2),"最大": round(df_sub["售价"].max(), 2),"平均": round(df_sub["售价"].mean(), 2)})data_all = pd.concat(data_list)# print(data_all)#apply(compute)compute 自定义函数,没有(参数)df_group = data_all.groupby("品牌").apply(compute)df_group.to_excel("按品牌汇总统计.xlsx")app.quit()
#数据透视表:把列式数据转换成二位交叉形式,便于分析#姓名课程分数转换成姓名语文数学英语# 数据透视表import pandas as pdimport os# pd.read_excel 结果是DataFramedata_all = pd.read_excel('Result.xlsx')# index 是列表 ['姓名','学号']# PIVOT 在数据库 表示列行转换data_pivot = pd.pivot_table(data_all, index=["姓名"], columns="课程", values="分数", fill_value=0.0 )data_pivot.to_excel("透视表.xlsx")# 效果同上import pandas as pdimport osdata_all = []for file in os.listdir('.'):if file.endswith('.xlsx'):data_all.append(pd.read_excel(file))# index 是列表 ['姓名','学号']# PIVOT 在数据库 表示列行转换# print(type(data_all)) list# print(type(pd.concat(data_all)))pandas.core.frame.DataFramedata_pivot = pd.pivot_table(pd.concat(data_all), index=["姓名"], columns="课程", values="分数" )data_pivot.to_excel("透视表.xlsx")
# 一个Excel多个sheet表,合并透视表,追加合计import pandas as pddfs= pd.read_excel("Result.xlsx",sheet_name=None)df_list= []for sheet_name, df in dfs.items():print(sheet_name)print(df)df["月份"]=sheet_namedf_list.append(df)data_all = pd.concat(df_list)data_pivot = pd.pivot_table(data_all,index=['产品名称'],columns='月份',values='销售金额',aggfunc="sum",fill_value=0,margins=True,margins_name="合计")data_pivot.to_excel("透视表.xlsx")
pandas的nlargest(n,“排序的列”),只能求最大N个值
import pandas as pddfs= pd.read_excel("Result.xlsx",sheet_name=None)df_list= []for sheet_name, df in dfs.items():print(sheet_name)print(df)df["班级"]=sheet_namedf_list.append(df)data_all = pd.concat(df_list)data_all.groupby("班级").apply(lambda x: x.nlargest(2, "分数")).to_excel("透视表.xlsx")
import xlwings as xwimport numpyapp = xw.App(visible=False,add_book=False)workbook =app.books.open("Result.xlsx")sheet = workbook.sheets[0]# 统计员工人数employ_total = sheet.range("A3").expand('table').shape[0]# permutation(10),随机生成0-9 10位随机数employ_GH = numpy.random.permutation(employ_total)+1# options(transpose=True)列模式sheet.range("B3").options(transpose=True).value = employ_GHworkbook.save()workbook.close()app.quit()
同比
df[‘昨日’] = df[“销售金额”].shift()
shift() 会把销售金额放入昨日
import pandas as pddf = pd.read_excel("Result.xlsx",sheet_name=0)df['昨日'] = df["销售金额"].shift()df["日环比"] = (df["销售金额"]-df["昨日"])/df["昨日"]df.drop(columns='昨日', inplace=True)df.fillna(0.0, inplace=True)df["日环比"] = (df["日环比"].map(lambda x: round(x, 2))).map(lambda x: format(x, '.2%'))file = "处理结果.xlsx"#df.to_excel(file)with pd.ExcelWriter(path=file, date_format="YYYY-MM-DD") as writer:df.to_excel(writer, sheet_name='日环比数据', index=False)print(df)
按模板批量创建Excel文件,同时替换里面的内容
# 文档有格式,推荐xlwings模块import xlwings as xwimport shutildatas=[("财务部", "张三"),("IT部", "ZEN"),("设计部", "李四")]app = xw.App(visible=False, add_book=False)for dept, manager in datas:target_file = f"部门数据-{dept}.xlsx"# shutil.copy(源文件,目标文件)shutil.copy("Model.xlsx", target_file)#只修改第一个工作表workbook = app.books.open(target_file)worksheet = workbook.sheets[0]worksheet["A1"].value = worksheet["A1"].value.replace("{dept}", dept)worksheet["B2"].value = worksheet["B2"].value.replace("{manager}", manager)workbook.save()workbook.close()app.quit()
python 读取word 到Excel
from docx import Documentimport osimport pandas as pddef parse_docfile(docfile):doc = Document(docfile)# 获取第一个tabletable = doc.tables[0]# 返回字典return dict(姓名=table.cell(0, 1).text,性别=table.cell(1, 1).text)# 列名columns = None# 数据内容datas = []for file in os.listdir():if file.endswith(".docx"):data = parse_docfile(file)if not columns:columns = data.keys()datas.append([data[column] for column in columns])df = pd.DataFrame(datas,columns= columns)df.to_excel('Result.xlsx',index=False)
python 读取word 统计词频 输出到Excel
import docx# 中文分词import jieba# 统计词频from collections import Counterimport pandas as pddoc = docx.Document("A.docx")content = " ".join([para.text for para in doc.paragraphs])# cut方法:将包含汉字的整个句子分割成分开的单词的主要功能# jieba.cut 方法接受三个输入参数:# 需要分词的字符串# cut_all 参数用来控制是否采用全模式# HMM 参数用来控制是否使用 HMM 模型seg_list = jieba.cut(content, cut_all=False)#过滤标点符号、无意义的单个字seg_list = [wordfor word in seg_listif len(word)>1]# print(seg_list)# 统计词频counter = Counter(seg_list)#print(counter.items())#print('-----')#print(list(counter.items()))#print('-----')#for key,count in list(counter.items())[:10]:#print(key, count)df = pd.DataFrame(list(counter.items()),columns=["word","count"])df.sort_values(by="count",ascending=False, inplace=True)df.to_excel("Result.xlsx",index=False)
python 读取Excel 输出word
importdocxfrom docxtpl import DocxTemplateimport datetimeimport pandas as pd# index_col 设为关键字df = pd.read_excel("Result.xlsx",index_col="学号")pdate = datetime.datetime.now().strftime("%Y-%m-%d")# print(df)# print(df.items())# print(df.iterrows())for num, row in df.iterrows():print(f"处理学号:{num}")doc = DocxTemplate("Model.docx")doc.render(dict(num=num,name=row["姓名"],YW=row["语文"],SX=row["数学"],YY=row["英语"],ZF=row["语文"]+row["数学"]+row['英语'],RQ=pdate))doc.save(f"{num}--{row['姓名']}.docx")
python 在网页上显示Excel
Excel 修改数据,网页只有刷新就可以了。
# Web 应用框架发布网页import flaskimport pandas as pdapp = flask.Flask(__name__)# 网址后面加 /excel访问这个网页了@app.route('/excel')def show_excel():df = pd.read_excel('Result.xlsx')return f"" \ f"" \ f"Ares-ZEN
" \ f"%s" \ f"<" \ f"/html>" \% df.to_html()app.run()
Excel 转换成透视表比发布网页
import pandas as pdimport flask#创建flask对象app = flask.Flask(__name__)@app.route('/excel')def show_excel():df = pd.read_excel("Result.xlsx")df_pivot = pd.pivot_table(df,index=["姓名"],columns="课程",values="分数",fill_value=0.0)return f"" \ f"" \ f"考试成绩展示区
" \ f"%s" \ f"" % df_pivot.to_html()app.run()
python 制作网页查询Excel
import pandas as pdimport flaskfrom flask import request#创建flask对象app = flask.Flask(__name__)@app.route('/query_grade',methods=["GET","POST"])def query_grade():df = pd.read_excel("透视表.xlsx")grade_data = pd.DataFrame()student_name=request.form.get("st_name")if student_name:grade_data=df.query(f"姓名=='{student_name}'")return f"""xxxxxxxxx姓名:<input type="text" name="st_name" value="
{student_name}"><input type="submit" name="submit" value="查询"%s""" % grade_data.to_html()app.run()
python 读取Excel 插入数据库
import pandas as pdimport pymysqlconn = pymssql.connect(host="host",user="root",password="ZEN",# sqlserver 则为databasedb='数据库',charset="UTF-8",autocommit=True# 自动确认Insert)df = pd.read_excel('xxx.xlsx')for index,row in df.iterrows():sql = f""" insert into table_name() values()"""cur = conn.cursor()cur.execute(sql)# 非查询要提交 如果数据库连接配置了autocommit此处就省略了# conn.commit()# cur.execute("select *fromXXX ")#resList = cur.fetchall()#print(resList)#pandas 读取sql,导出Excel# pd.read_sql("""select *fromxxx""",con=conn)# pd.to_excel("xxx.xlsx",index=False)#查询完毕后必须关闭连接conn.close()
Python 在Excel绘制折线图
import pandas as pdimport xlwings as xw#画图import matplotlib.pyplot as plt#设置中文字体#plt.rcParams['font.sans-self'] = ['Simhei']app = xw.App(visible=False, add_book=False)# 读取Excel数据到Pandasworkbook = app.books.open('Result.xlsx')sheet = workbook.sheets[0]df = sheet.range("A1").options(pd.DataFrame, expand='table').value#新建画布figure = plt.figure(figsize=(12,6),dpi=100)plt.plot(df["金额"])# plt.show()# update= True重复添加,只更新sheet.pictures.add(figure,name='折线图',update=True,left=sheet.range("F2").left,top=sheet.range("F2").top)workbook.save()workbook.close()app.quit()
© 版权声明
文章版权归作者所有,未经允许请勿转载。
THE END