Pytorch+PyG实现GraphSAGE

文章目录

  • 前言
  • 一、导入相关库
  • 二、加载Cora数据集
  • 三、定义GraphSAGE网络
  • 四、定义模型
  • 五、模型训练
  • 六、模型验证
  • 七、结果
  • 完整代码

前言

大家好,我是阿光。

本专栏整理了《图神经网络代码实战》,内包含了不同图神经网络的相关代码实现(PyG以及自实现),理论与实践相结合,如GCN、GAT、GraphSAGE等经典图网络,每一个代码实例都附带有完整的代码。

正在更新中~ ✨

图片[1] - Pytorch+PyG实现GraphSAGE - MaxSSL

我的项目环境:

  • 平台:Windows10
  • 语言环境:python3.7
  • 编译器:PyCharm
  • PyTorch版本:1.11.0
  • PyG版本:2.1.0

项目专栏:【图神经网络代码实战目录】


本文我们将使用Pytorch + Pytorch Geometric来简易实现一个GraphSAGE,让新手可以理解如何PyG来搭建一个简易的图网络实例demo。

一、导入相关库

本项目我们需要结合两个库,一个是Pytorch,因为还需要按照torch的网络搭建模型进行书写,第二个是PyG,因为在torch中并没有关于图网络层的定义,所以需要torch_geometric这个库来定义一些图层。

import torchimport torch.nn.functional as Fimport torch.nn as nnimport torch_geometric.nn as pyg_nnfrom torch_geometric.datasets import Planetoid

二、加载Cora数据集

本文使用的数据集是比较经典的Cora数据集,它是一个根据科学论文之间相互引用关系而构建的Graph数据集合,论文分为7类,共2708篇。

  • Genetic_Algorithms
  • Neural_Networks
  • Probabilistic_Methods
  • Reinforcement_Learning
  • Rule_Learning
  • Theory

这个数据集是一个用于图节点分类的任务,数据集中只有一张图,这张图中含有2708个节点,10556条边,每个节点的特征维度为1433。

# 1.加载Cora数据集dataset = Planetoid(root='./data/Cora', name='Cora')

三、定义GraphSAGE网络

这里我们就不重点介绍GraphSAGE网络了,相信大家能够掌握基本原理,本文我们使用的是PyG定义网络层,在PyG中已经定义好了SAGEConv这个层,该层采用的就是GraphSAGE机制。

图片[2] - Pytorch+PyG实现GraphSAGE - MaxSSL

对于SAGEConv的常用参数:

  • in_channels:每个样本的输入维度,就是每个节点的特征维度
  • out_channels:经过注意力机制后映射成的新的维度,就是经过GAT后每个节点的维度长度
  • normalize:是否添加自环,并且是否归一化,默认为True
  • add_self_loops:为图添加自环,是否考虑自身节点的信息
  • bias:训练一个偏置b
# 2.定义GraphSAGE网络class GraphSAGE(nn.Module):def __init__(self, num_node_features, num_classes):super(GraphSAGE, self).__init__()self.conv1 = pyg_nn.SAGEConv(num_node_features, 16)self.conv2 = pyg_nn.SAGEConv(16, num_classes)def forward(self, data):x, edge_index = data.x, data.edge_indexx = self.conv1(x, edge_index)x = F.relu(x)x = F.dropout(x, training=self.training)x = self.conv2(x, edge_index)return F.log_softmax(x, dim=1)

上面网络我们定义了两个SAGEConv层,第一层的参数的输入维度就是初始每个节点的特征维度,输出维度是16。

第二个层的输入维度为16,输出维度为分类个数,因为我们需要对每个节点进行分类,最终加上softmax操作。

四、定义模型

下面就是定义了一些模型需要的参数,像学习率、迭代次数这些超参数,然后是模型的定义以及优化器及损失函数的定义,和pytorch定义网络是一样的。

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # 设备epochs = 200 # 学习轮数lr = 0.0003 # 学习率num_node_features = dataset.num_node_features # 每个节点的特征数num_classes = dataset.num_classes # 每个节点的类别数data = dataset[0].to(device) # Cora的一张图# 3.定义模型model = GraphSAGE(num_node_features, num_classes).to(device)optimizer = torch.optim.Adam(model.parameters(), lr=lr) # 优化器loss_function = nn.NLLLoss() # 损失函数

五、模型训练

模型训练部分也是和pytorch定义网络一样,因为都是需要经过前向传播、反向传播这些过程,对于损失、精度这些指标可以自己添加。

# 训练模式model.train()for epoch in range(epochs):optimizer.zero_grad()pred = model(data)loss = loss_function(pred[data.train_mask], data.y[data.train_mask]) # 损失correct_count_train = pred.argmax(axis=1)[data.train_mask].eq(data.y[data.train_mask]).sum().item() # epoch正确分类数目acc_train = correct_count_train / data.train_mask.sum().item() # epoch训练精度loss.backward()optimizer.step()if epoch % 20 == 0:print("【EPOCH: 】%s" % str(epoch + 1))print('训练损失为:{:.4f}'.format(loss.item()), '训练精度为:{:.4f}'.format(acc_train))print('【Finished Training!】')

六、模型验证

下面就是模型验证阶段,在训练时我们是只使用了训练集,测试的时候我们使用的是测试集,注意这和传统网络测试不太一样,在图像分类一些经典任务中,我们是把数据集分成了两份,分别是训练集、测试集,但是在Cora这个数据集中并没有这样,它区分训练集还是测试集使用的是掩码机制,就是定义了一个和节点长度相同纬度的数组,该数组的每个位置为True或者False,标记着是否使用该节点的数据进行训练。

# 模型验证model.eval()pred = model(data)# 训练集(使用了掩码)correct_count_train = pred.argmax(axis=1)[data.train_mask].eq(data.y[data.train_mask]).sum().item()acc_train = correct_count_train / data.train_mask.sum().item()loss_train = loss_function(pred[data.train_mask], data.y[data.train_mask]).item()# 测试集correct_count_test = pred.argmax(axis=1)[data.test_mask].eq(data.y[data.test_mask]).sum().item()acc_test = correct_count_test / data.test_mask.sum().item()loss_test = loss_function(pred[data.test_mask], data.y[data.test_mask]).item()print('Train Accuracy: {:.4f}'.format(acc_train), 'Train Loss: {:.4f}'.format(loss_train))print('TestAccuracy: {:.4f}'.format(acc_test), 'TestLoss: {:.4f}'.format(loss_test))

七、结果

【EPOCH:1训练损失为:1.9547 训练精度为:0.1429【EPOCH:21训练损失为:1.8378 训练精度为:0.2143【EPOCH:41训练损失为:1.6961 训练精度为:0.3929【EPOCH:61训练损失为:1.4987 训练精度为:0.6857【EPOCH:81训练损失为:1.3121 训练精度为:0.7714【EPOCH:101训练损失为:1.1580 训练精度为:0.9143【EPOCH:121训练损失为:0.9903 训练精度为:0.8643【EPOCH:141训练损失为:0.8326 训练精度为:0.9286【EPOCH:161训练损失为:0.7429 训练精度为:0.9571【EPOCH:181训练损失为:0.6505 训练精度为:0.9571【Finished Training!】>>>Train Accuracy: 1.0000 Train Loss: 0.4065>>>TestAccuracy: 0.7060 TestLoss: 1.2712
训练集测试集
Accuracy1.00000.7060
Loss0.40651.2712

完整代码

import torchimport torch.nn.functional as Fimport torch.nn as nnimport torch_geometric.nn as pyg_nnfrom torch_geometric.datasets import Planetoid# 1.加载Cora数据集dataset = Planetoid(root='./data/Cora', name='Cora')# 2.定义GraphSAGE网络class GraphSAGE(nn.Module):def __init__(self, num_node_features, num_classes):super(GraphSAGE, self).__init__()self.conv1 = pyg_nn.SAGEConv(num_node_features, 16)self.conv2 = pyg_nn.SAGEConv(16, num_classes)def forward(self, data):x, edge_index = data.x, data.edge_indexx = self.conv1(x, edge_index)x = F.relu(x)x = F.dropout(x, training=self.training)x = self.conv2(x, edge_index)return F.log_softmax(x, dim=1)device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # 设备epochs = 200 # 学习轮数lr = 0.0003 # 学习率num_node_features = dataset.num_node_features # 每个节点的特征数num_classes = dataset.num_classes # 每个节点的类别数data = dataset[0].to(device) # Cora的一张图# 3.定义模型model = GraphSAGE(num_node_features, num_classes).to(device)optimizer = torch.optim.Adam(model.parameters(), lr=lr) # 优化器loss_function = nn.NLLLoss() # 损失函数# 训练模式model.train()for epoch in range(epochs):optimizer.zero_grad()pred = model(data)loss = loss_function(pred[data.train_mask], data.y[data.train_mask]) # 损失correct_count_train = pred.argmax(axis=1)[data.train_mask].eq(data.y[data.train_mask]).sum().item() # epoch正确分类数目acc_train = correct_count_train / data.train_mask.sum().item() # epoch训练精度loss.backward()optimizer.step()if epoch % 20 == 0:print("【EPOCH: 】%s" % str(epoch + 1))print('训练损失为:{:.4f}'.format(loss.item()), '训练精度为:{:.4f}'.format(acc_train))print('【Finished Training!】')# 模型验证model.eval()pred = model(data)# 训练集(使用了掩码)correct_count_train = pred.argmax(axis=1)[data.train_mask].eq(data.y[data.train_mask]).sum().item()acc_train = correct_count_train / data.train_mask.sum().item()loss_train = loss_function(pred[data.train_mask], data.y[data.train_mask]).item()# 测试集correct_count_test = pred.argmax(axis=1)[data.test_mask].eq(data.y[data.test_mask]).sum().item()acc_test = correct_count_test / data.test_mask.sum().item()loss_test = loss_function(pred[data.test_mask], data.y[data.test_mask]).item()print('Train Accuracy: {:.4f}'.format(acc_train), 'Train Loss: {:.4f}'.format(loss_train))print('TestAccuracy: {:.4f}'.format(acc_test), 'TestLoss: {:.4f}'.format(loss_test))
© 版权声明
THE END
喜欢就支持一下吧
点赞0 分享