文章目录

  • 容我废话一下
  • 一、思路流程
  • 二、图像转动漫
  • 三、视频帧读取与视频帧写入

容我废话一下

最近几个月,毒教材被曝光引发争议,那些编写度教材的人着实可恶。咱程序员也没有手绘插画能力,但咱可以借助强大的深度学习模型将视频转动漫。所以今天的目标是让任何具有python语言基本能力的程序员,实现短视频转动漫效果。

效果展示

一、思路流程

  1. 读取视频帧
  2. 将每一帧图像转为动漫帧
  3. 将转换后的动漫帧转为视频

难点在于如何将图像转为动漫效果。这里我们使用基于深度学习的动漫效果转换模型,考虑到许多读者对这块不了解,因此我这边准备好了源码和模型,直接调用即可。不想看文章细节的可以直接拖到文章末尾,获取源码。

二、图像转动漫

为了让大家不关心深度学习模型,已经为大家准备好了转换后的onnx类型模型。接下来按顺序介绍运行onnx模型流程。

安装onnxruntime库

pip install onnxruntime

如果想要用GPU加速,可以安装GPU版本的onnxruntime:

pip install onnxruntime-gpu

需要注意的是:

onnxruntime-gpu的版本跟CUDA有关联,具体对应关系如下:


当然,如果用CPU运行,那就不需要考虑那么多了。考虑到通用性,本文全部以CPU版本onnxruntime。

运行模型

先导入onnxruntime库,创建InferenceSession对象,调用run函数。

如下所示

import onnxruntime as rt sess = rt.InferenceSession(MODEL_PATH)inp_name = sess.get_inputs()[0].nameout = sess.run(None, {inp_name: inp_image})

具体到我们这里的动漫效果,实现细节如下:

import cv2import numpy as npimport onnxruntime as rt # MODEL = "models/anime_1.onnx"MODEL = "models/anime_2.onnx"sess = rt.InferenceSession(MODEL)inp_name = sess.get_inputs()[0].namedef infer(rgb):    rgb = np.expand_dims(rgb, 0)    rgb = rgb *  2.0 / 255.0 - 1     rgb =  rgb.astype(np.float32)     out = sess.run(None, {inp_name: rgb})    out = out[0][0]    out = (out+1)/2*255    out = np.clip(out, 0, 255).astype(np.uint8)    return outdef preprocess(rgb):    pad_w = 0    pad_h = 0    h,w,__ = rgb.shape    N = 2**3    if h%N!=0:        pad_h=(h//N+1)*N-h    if w%2!=0:        pad_w=(w//N+1)*N-w    # print(pad_w, pad_h, w, h)    rgb = np.pad(rgb, ((0,pad_h),(0, pad_w),(0,0)), "reflect")    return rgb, pad_w, pad_h

其中, preprocess函数确保输入图像的宽高是8的整数倍。这里主要是因为考虑到深度学习模型有下采样,确保每次下采样能被2整除。

单帧效果展示



三、视频帧读取与视频帧写入

这里使用Opencv库,提取视频中每一帧并调用回调函数将视频帧回传。在将图片转视频过程中,通过定义VideoWriter类型变量WRITE确保唯一性。具体实现代码如下:

import cv2from tqdm import tqdmWRITER = Nonedef write_frame(frame, out_path, fps=30):    global WRITER    if WRITER is None:        size = frame.shape[0:2][::-1]        WRITER = cv2.VideoWriter(            out_path,            cv2.VideoWriter_fourcc(*'mp4v'),  # 编码器            fps,            size)    WRITER.write(frame)def extract_frames(video_path, callback):    video = cv2.VideoCapture(video_path)    num_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))    for _ in tqdm(range(num_frames)):        _, frame = video.read()        if frame is not None:            callback(frame)        else:            break

完整源码获取点击下方微信名片获取哟~

给大家推荐一套爬虫教程,涵盖常见大部分案例,非常实用!

代码总是学完就忘记?100个爬虫实战项目!让你沉迷学习丨学以致用丨下一个Python大神就是你!