List集合遍历的五种方法

图片[1] - List集合遍历的五种方法 - MaxSSL

List集合遍历的五种方法:

public static void main(String[] args) {List<Integer> list = Lists.newArrayList();list.add(1);list.add(2);list.add(3);//方法一 普通for循环遍历System.out.println("普通for循环遍历");for (int i = 0; i < list.size(); i++) {System.out.println(list.get(i));}//方法二 增强for (也称for each循环)是JDK1.5以后出来的一个高级for循环,专门用来遍历数组和集合的。//内部原理其实是个Iterator迭代器,所以在遍历的过程中,不能对集合中的元素进行增删操作。System.out.println("增强for");for (int i : list) {System.out.println(i);}//方法三 LambdaSystem.out.println("Lambda");list.forEach(e -> {System.out.println(e);});list.stream().forEach(e -> {System.out.println(e);});//方法四 倒序遍历System.out.println("倒序遍历");for (int i = list.size() - 1; i >= 0; i--) {System.out.println(list.get(i));}//方法五 迭代器遍历System.out.println("迭代器遍历");Iterator<Integer> it = list.iterator();while (it.hasNext()) {System.out.println(it.next());}//方法六 List集合自带迭代器System.out.println("List集合自带迭代器");ListIterator<Integer> listIterator = list.listIterator();while(listIterator.hasNext()){System.out.println(listIterator.next());}}

扩展

List接口概述

List是有序的 Collection(有时称为序列)。列表可能包含重复的元素。除了继承自 的操作外Collection,该List接口还包括以下操作:

Positional access— 根据元素在列表中的数字位置操作元素。诸如get、 set、add、addAll和remove 等方法。

Search— 在列表中搜索指定对象并返回其数字位置。搜索方法包括 indexOf和lastIndexOf。

Iteration— 扩展Iterator语义以利用列表的顺序性。listIterator方法提供了这种行为。

Range-view— 该方法对列表sublist执行任意范围操作。

Java 平台包含两个通用List实现。 ArrayList是性能更好的实现,并且 LinkedList在某些情况下提供更好的性能。

List操作

list1.addAll(list2);
List<Type> list3 = new ArrayList<Type>(list1);list3.addAll(list2);
List<String> list = people.stream().map(Person::getName).collect(Collectors.toList());

与 Set接口一样,List加强了对equals和hashCode方法的要求,以便List可以比较两个对象的逻辑相等性,而无需考虑它们的实现类。如果两个List对象以相同的顺序包含相同的元素,则它们是相等的。

List位置访问和搜索操作

基本位置访问运算:

get、set、add、remove(set和remove操作返回被覆盖或删除的旧值)。
indexOf和lastIndexOf返回列表中指定元素的第一个或最后一个索引。
addAll 操作从指定位置开始插入指定 Collection 的所有元素。

交换列表中两个索引值:

第一种:

public static <E> void swap(List<E> a, int i, int j) { E tmp = a.get(i); a.set(i, a.get(j)); a.set(j, tmp); }

这是一种多态算法:它交换 List 中的任意两个元素,而不管其实现类型如何。
第二种:

public static void shuffle(List<" />> list, Random rnd) { for (int i = list.size(); i > 1; i--) swap(list, i - 1, rnd.nextInt(i)); }

该算法在Collections 类中,使用指定的随机源随机排列指定的列表。它从底部向上运行列表,反复将随机选择的元素交换到当前位置。
案列:

public class Shuffle { public static void main(String[] args) { List<String> list = new ArrayList<String>(); for (String a : args) list.add(a); Collections.shuffle(list, new Random()); System.out.println(list); } }

Arrays 类中asList 是静态工厂方法,它允许将数组视为 List。此方法不复制数组。 List 中的更改会写入数组,反之亦然。生成的 List 不是通用的 List 实现,因为它没有实现添加和删除操作:数组不可调整大小。利用 Arrays.asList 并调用使用默认随机源的 shuffle 库版本,以下方法与上面方法作用一样,但效率更高。

public class Shuffle {public static void main(String[] args) {List<String> list = Arrays.asList(args);Collections.shuffle(list);System.out.println(list);}}

ListIterator

List还提供了一个更丰富的迭代器ListIterator,它可以在任一方向遍历列表,在迭代过程中修改列表,并获取迭代器的当前位置。

// List IteratorsListIterator<E> listIterator();ListIterator<E> listIterator(int index);

向后遍历列表:

for (ListIterator<Type> it = list.listIterator(list.size()); it.hasPrevious(); ) {Type t = it.previous();...}

ListIterator与Iterator关系:

Iterator 可遍历集合 Set 和 List, ListIterator 只能遍历 List。

Iterator 只能单向遍历;ListIterator 可双向遍历。

ListIterator 继承自 Iterator 接口,增加了新的方法,比如添加一个元素、替换一个元素、获取前面或后面元素的索引位置。

List算法

Collections为List提供了更容易操作的算法:

sort — 使用合并排序算法对 List 进行排序,该算法提供快速、稳定的排序。 (稳定排序是不对相等元素重新排序的排序。)

shuffle — 随机排列 List 中的元素。

reverse — 反转 List 中元素的顺序。

rotate — 将 List 中的所有元素旋转指定距离。

swap——交换列表中指定位置的元素。

replaceAll — 将所有出现的一个指定值替换为另一个。

fill — 用指定的值覆盖 List 中的每个元素。

copy — 将源列表复制到目标列表中。

binarySearch — 使用二分搜索算法在有序列表中搜索元素。

indexOfSubList — 返回一个 List 中与另一个 List 相等的第一个子列表的索引。

lastIndexOfSubList — 返回一个 List 的最后一个与另一个 List 相等的子列表的索引。

一切回归源码

package java.util;import java.util.function.UnaryOperator;/** * An ordered collection (also known as a sequence).The user of this * interface has precise control over where in the list each element is * inserted.The user can access elements by their integer index (position in * the list), and search for elements in the list.

* * Unlike sets, lists typically allow duplicate elements.More formally, * lists typically allow pairs of elements e1 and e2 * such that e1.equals(e2), and they typically allow multiple * null elements if they allow null elements at all.It is not inconceivable * that someone might wish to implement a list that prohibits duplicates, by * throwing runtime exceptions when the user attempts to insert them, but we * expect this usage to be rare.

* * The List interface places additional stipulations, beyond those * specified in the Collection interface, on the contracts of the * iterator, add, remove, equals, and * hashCode methods.Declarations for other inherited methods are * also included here for convenience.

* * The List interface provides four methods for positional (indexed) * access to list elements.Lists (like Java arrays) are zero based.Note * that these operations may execute in time proportional to the index value * for some implementations (the LinkedList class, for * example). Thus, iterating over the elements in a list is typically * preferable to indexing through it if the caller does not know the * implementation.

* * The List interface provides a special iterator, called a * ListIterator, that allows element insertion and replacement, and * bidirectional access in addition to the normal operations that the * Iterator interface provides.A method is provided to obtain a * list iterator that starts at a specified position in the list.

* * The List interface provides two methods to search for a specified * object.From a performance standpoint, these methods should be used with * caution.In many implementations they will perform costly linear * searches.

* * The List interface provides two methods to efficiently insert and * remove multiple elements at an arbitrary point in the list.

* * Note: While it is permissible for lists to contain themselves as elements, * extreme caution is advised: the equals and hashCode * methods are no longer well defined on such a list. * *

Some list implementations have restrictions on the elements that * they may contain.For example, some implementations prohibit null elements, * and some have restrictions on the types of their elements.Attempting to * add an ineligible element throws an unchecked exception, typically * NullPointerException or ClassCastException.Attempting * to query the presence of an ineligible element may throw an exception, * or it may simply return false; some implementations will exhibit the former * behavior and some will exhibit the latter.More generally, attempting an * operation on an ineligible element whose completion would not result in * the insertion of an ineligible element into the list may throw an * exception or it may succeed, at the option of the implementation. * Such exceptions are marked as "optional" in the specification for this * interface. * *

This interface is a member of the ** Java Collections Framework. * * @param the type of elements in this list * * @authorJosh Bloch * @authorNeal Gafter * @see Collection * @see Set * @see ArrayList * @see LinkedList * @see Vector * @see Arrays#asList(Object[]) * @see Collections#nCopies(int, Object) * @see Collections#EMPTY_LIST * @see AbstractList * @see AbstractSequentialList * @since 1.2 */public interface List<E> extends Collection<E> {// Query Operations/** * Returns the number of elements in this list.If this list contains * more than Integer.MAX_VALUE elements, returns * Integer.MAX_VALUE. * * @return the number of elements in this list */int size();/** * Returns true if this list contains no elements. * * @return true if this list contains no elements */boolean isEmpty();/** * Returns true if this list contains the specified element. * More formally, returns true if and only if this list contains * at least one element e such that * (o==null?e==null:o.equals(e)). * * @param o element whose presence in this list is to be tested * @return true if this list contains the specified element * @throws ClassCastException if the type of the specified element * is incompatible with this list * (optional) * @throws NullPointerException if the specified element is null and this * list does not permit null elements * (optional) */boolean contains(Object o);/** * Returns an iterator over the elements in this list in proper sequence. * * @return an iterator over the elements in this list in proper sequence */Iterator<E> iterator();/** * Returns an array containing all of the elements in this list in proper * sequence (from first to last element). * *

The returned array will be "safe" in that no references to it are * maintained by this list.(In other words, this method must * allocate a new array even if this list is backed by an array). * The caller is thus free to modify the returned array. * *

This method acts as bridge between array-based and collection-based * APIs. * * @return an array containing all of the elements in this list in proper * sequence * @see Arrays#asList(Object[]) */Object[] toArray();/** * Returns an array containing all of the elements in this list in * proper sequence (from first to last element); the runtime type of * the returned array is that of the specified array.If the list fits * in the specified array, it is returned therein.Otherwise, a new * array is allocated with the runtime type of the specified array and * the size of this list. * *

If the list fits in the specified array with room to spare (i.e., * the array has more elements than the list), the element in the array * immediately following the end of the list is set to null. * (This is useful in determining the length of the list only if * the caller knows that the list does not contain any null elements.) * *

Like the {@link #toArray()} method, this method acts as bridge between * array-based and collection-based APIs.Further, this method allows * precise control over the runtime type of the output array, and may, * under certain circumstances, be used to save allocation costs. * *

Suppose x is a list known to contain only strings. * The following code can be used to dump the list into a newly * allocated array of String: * *

{@code * String[] y = x.toArray(new String[0]); * }

* * Note that toArray(new Object[0]) is identical in function to * toArray(). * * @param a the array into which the elements of this list are to *be stored, if it is big enough; otherwise, a new array of the *same runtime type is allocated for this purpose. * @return an array containing the elements of this list * @throws ArrayStoreException if the runtime type of the specified array * is not a supertype of the runtime type of every element in * this list * @throws NullPointerException if the specified array is null */<T> T[] toArray(T[] a);// Modification Operations/** * Appends the specified element to the end of this list (optional * operation). * *

Lists that support this operation may place limitations on what * elements may be added to this list.In particular, some * lists will refuse to add null elements, and others will impose * restrictions on the type of elements that may be added.List * classes should clearly specify in their documentation any restrictions * on what elements may be added. * * @param e element to be appended to this list * @return true (as specified by {@link Collection#add}) * @throws UnsupportedOperationException if the add operation * is not supported by this list * @throws ClassCastException if the class of the specified element * prevents it from being added to this list * @throws NullPointerException if the specified element is null and this * list does not permit null elements * @throws IllegalArgumentException if some property of this element * prevents it from being added to this list */boolean add(E e);/** * Removes the first occurrence of the specified element from this list, * if it is present (optional operation).If this list does not contain * the element, it is unchanged.More formally, removes the element with * the lowest index i such that * (o==null?get(i)==null:o.equals(get(i))) * (if such an element exists).Returns true if this list * contained the specified element (or equivalently, if this list changed * as a result of the call). * * @param o element to be removed from this list, if present * @return true if this list contained the specified element * @throws ClassCastException if the type of the specified element * is incompatible with this list * (optional) * @throws NullPointerException if the specified element is null and this * list does not permit null elements * (optional) * @throws UnsupportedOperationException if the remove operation * is not supported by this list */boolean remove(Object o);// Bulk Modification Operations/** * Returns true if this list contains all of the elements of the * specified collection. * * @paramc collection to be checked for containment in this list * @return true if this list contains all of the elements of the * specified collection * @throws ClassCastException if the types of one or more elements * in the specified collection are incompatible with this * list * (optional) * @throws NullPointerException if the specified collection contains one * or more null elements and this list does not permit null * elements * (optional), * or if the specified collection is null * @see #contains(Object) */boolean containsAll(Collection<?> c);/** * Appends all of the elements in the specified collection to the end of * this list, in the order that they are returned by the specified * collection's iterator (optional operation).The behavior of this * operation is undefined if the specified collection is modified while * the operation is in progress.(Note that this will occur if the * specified collection is this list, and it's nonempty.) * * @param c collection containing elements to be added to this list * @return true if this list changed as a result of the call * @throws UnsupportedOperationException if the addAll operation * is not supported by this list * @throws ClassCastException if the class of an element of the specified * collection prevents it from being added to this list * @throws NullPointerException if the specified collection contains one * or more null elements and this list does not permit null * elements, or if the specified collection is null * @throws IllegalArgumentException if some property of an element of the * specified collection prevents it from being added to this list * @see #add(Object) */boolean addAll(Collection<? extends E> c);/** * Inserts all of the elements in the specified collection into this * list at the specified position (optional operation).Shifts the * element currently at that position (if any) and any subsequent * elements to the right (increases their indices).The new elements * will appear in this list in the order that they are returned by the * specified collection's iterator.The behavior of this operation is * undefined if the specified collection is modified while the * operation is in progress.(Note that this will occur if the specified * collection is this list, and it's nonempty.) * * @param index index at which to insert the first element from the *specified collection * @param c collection containing elements to be added to this list * @return true if this list changed as a result of the call * @throws UnsupportedOperationException if the addAll operation * is not supported by this list * @throws ClassCastException if the class of an element of the specified * collection prevents it from being added to this list * @throws NullPointerException if the specified collection contains one * or more null elements and this list does not permit null * elements, or if the specified collection is null * @throws IllegalArgumentException if some property of an element of the * specified collection prevents it from being added to this list * @throws IndexOutOfBoundsException if the index is out of range * (index < 0 || index > size()) */boolean addAll(int index, Collection<? extends E> c);/** * Removes from this list all of its elements that are contained in the * specified collection (optional operation). * * @param c collection containing elements to be removed from this list * @return true if this list changed as a result of the call * @throws UnsupportedOperationException if the removeAll operation * is not supported by this list * @throws ClassCastException if the class of an element of this list * is incompatible with the specified collection * (optional) * @throws NullPointerException if this list contains a null element and the * specified collection does not permit null elements * (optional), * or if the specified collection is null * @see #remove(Object) * @see #contains(Object) */boolean removeAll(Collection<?> c);/** * Retains only the elements in this list that are contained in the * specified collection (optional operation).In other words, removes * from this list all of its elements that are not contained in the * specified collection. * * @param c collection containing elements to be retained in this list * @return true if this list changed as a result of the call * @throws UnsupportedOperationException if the retainAll operation * is not supported by this list * @throws ClassCastException if the class of an element of this list * is incompatible with the specified collection * (optional) * @throws NullPointerException if this list contains a null element and the * specified collection does not permit null elements * (optional), * or if the specified collection is null * @see #remove(Object) * @see #contains(Object) */boolean retainAll(Collection<?> c);/** * Replaces each element of this list with the result of applying the * operator to that element.Errors or runtime exceptions thrown by * the operator are relayed to the caller. * * @implSpec * The default implementation is equivalent to, for this {@code list}: *

{@code * final ListIterator li = list.listIterator(); * while (li.hasNext()) { * li.set(operator.apply(li.next())); * } * }

* * If the list's list-iterator does not support the {@code set} operation * then an {@code UnsupportedOperationException} will be thrown when * replacing the first element. * * @param operator the operator to apply to each element * @throws UnsupportedOperationException if this list is unmodifiable. * Implementations may throw this exception if an element * cannot be replaced or if, in general, modification is not * supported * @throws NullPointerException if the specified operator is null or * if the operator result is a null value and this list does * not permit null elements * (optional) * @since 1.8 */default void replaceAll(UnaryOperator<E> operator) {Objects.requireNonNull(operator);final ListIterator<E> li = this.listIterator();while (li.hasNext()) {li.set(operator.apply(li.next()));}}/** * Sorts this list according to the order induced by the specified * {@link Comparator}. * *

All elements in this list must be mutually comparable using the * specified comparator (that is, {@code c.compare(e1, e2)} must not throw * a {@code ClassCastException} for any elements {@code e1} and {@code e2} * in the list). * *

If the specified comparator is {@code null} then all elements in this * list must implement the {@link Comparable} interface and the elements' * {@linkplain Comparable natural ordering} should be used. * *

This list must be modifiable, but need not be resizable. * * @implSpec * The default implementation obtains an array containing all elements in * this list, sorts the array, and iterates over this list resetting each * element from the corresponding position in the array. (This avoids the * n2 log(n) performance that would result from attempting * to sort a linked list in place.) * * @implNote * This implementation is a stable, adaptive, iterative mergesort that * requires far fewer than n lg(n) comparisons when the input array is * partially sorted, while offering the performance of a traditional * mergesort when the input array is randomly ordered.If the input array * is nearly sorted, the implementation requires approximately n * comparisons.Temporary storage requirements vary from a small constant * for nearly sorted input arrays to n/2 object references for randomly * ordered input arrays. * *

The implementation takes equal advantage of ascending and * descending order in its input array, and can take advantage of * ascending and descending order in different parts of the same * input array.It is well-suited to merging two or more sorted arrays: * simply concatenate the arrays and sort the resulting array. * *

The implementation was adapted from Tim Peters's list sort for Python * ( * TimSort).It uses techniques from Peter McIlroy's "Optimistic * Sorting and Information Theoretic Complexity", in Proceedings of the * Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp 467-474, * January 1993. * * @param c the {@code Comparator} used to compare list elements. *A {@code null} value indicates that the elements' *{@linkplain Comparable natural ordering} should be used * @throws ClassCastException if the list contains elements that are not * mutually comparable using the specified comparator * @throws UnsupportedOperationException if the list's list-iterator does * not support the {@code set} operation * @throws IllegalArgumentException * (optional) * if the comparator is found to violate the {@link Comparator} * contract * @since 1.8 */@SuppressWarnings({"unchecked", "rawtypes"})default void sort(Comparator<? super E> c) {Object[] a = this.toArray();Arrays.sort(a, (Comparator) c);ListIterator<E> i = this.listIterator();for (Object e : a) {i.next();i.set((E) e);}}/** * Removes all of the elements from this list (optional operation). * The list will be empty after this call returns. * * @throws UnsupportedOperationException if the clear operation * is not supported by this list */void clear();// Comparison and hashing/** * Compares the specified object with this list for equality.Returns * true if and only if the specified object is also a list, both * lists have the same size, and all corresponding pairs of elements in * the two lists are equal.(Two elements e1 and * e2 are equal if (e1==null ? e2==null : * e1.equals(e2)).)In other words, two lists are defined to be * equal if they contain the same elements in the same order.This * definition ensures that the equals method works properly across * different implementations of the List interface. * * @param o the object to be compared for equality with this list * @return true if the specified object is equal to this list */boolean equals(Object o);/** * Returns the hash code value for this list.The hash code of a list * is defined to be the result of the following calculation: *

{@code * int hashCode = 1; * for (E e : list) * hashCode = 31*hashCode + (e==null ? 0 : e.hashCode()); * }

* This ensures that list1.equals(list2) implies that * list1.hashCode()==list2.hashCode() for any two lists, * list1 and list2, as required by the general * contract of {@link Object#hashCode}. * * @return the hash code value for this list * @see Object#equals(Object) * @see #equals(Object) */int hashCode();// Positional Access Operations/** * Returns the element at the specified position in this list. * * @param index index of the element to return * @return the element at the specified position in this list * @throws IndexOutOfBoundsException if the index is out of range * (index < 0 || index >= size()) */E get(int index);/** * Replaces the element at the specified position in this list with the * specified element (optional operation). * * @param index index of the element to replace * @param element element to be stored at the specified position * @return the element previously at the specified position * @throws UnsupportedOperationException if the set operation * is not supported by this list * @throws ClassCastException if the class of the specified element * prevents it from being added to this list * @throws NullPointerException if the specified element is null and * this list does not permit null elements * @throws IllegalArgumentException if some property of the specified * element prevents it from being added to this list * @throws IndexOutOfBoundsException if the index is out of range * (index < 0 || index >= size()) */E set(int index, E element);/** * Inserts the specified element at the specified position in this list * (optional operation).Shifts the element currently at that position * (if any) and any subsequent elements to the right (adds one to their * indices). * * @param index index at which the specified element is to be inserted * @param element element to be inserted * @throws UnsupportedOperationException if the add operation * is not supported by this list * @throws ClassCastException if the class of the specified element * prevents it from being added to this list * @throws NullPointerException if the specified element is null and * this list does not permit null elements * @throws IllegalArgumentException if some property of the specified * element prevents it from being added to this list * @throws IndexOutOfBoundsException if the index is out of range * (index < 0 || index > size()) */void add(int index, E element);/** * Removes the element at the specified position in this list (optional * operation).Shifts any subsequent elements to the left (subtracts one * from their indices).Returns the element that was removed from the * list. * * @param index the index of the element to be removed * @return the element previously at the specified position * @throws UnsupportedOperationException if the remove operation * is not supported by this list * @throws IndexOutOfBoundsException if the index is out of range * (index < 0 || index >= size()) */E remove(int index);// Search Operations/** * Returns the index of the first occurrence of the specified element * in this list, or -1 if this list does not contain the element. * More formally, returns the lowest index i such that * (o==null?get(i)==null:o.equals(get(i))), * or -1 if there is no such index. * * @param o element to search for * @return the index of the first occurrence of the specified element in * this list, or -1 if this list does not contain the element * @throws ClassCastException if the type of the specified element * is incompatible with this list * (optional) * @throws NullPointerException if the specified element is null and this * list does not permit null elements * (optional) */int indexOf(Object o);/** * Returns the index of the last occurrence of the specified element * in this list, or -1 if this list does not contain the element. * More formally, returns the highest index i such that * (o==null?get(i)==null:o.equals(get(i))), * or -1 if there is no such index. * * @param o element to search for * @return the index of the last occurrence of the specified element in * this list, or -1 if this list does not contain the element * @throws ClassCastException if the type of the specified element * is incompatible with this list * (optional) * @throws NullPointerException if the specified element is null and this * list does not permit null elements * (optional) */int lastIndexOf(Object o);// List Iterators/** * Returns a list iterator over the elements in this list (in proper * sequence). * * @return a list iterator over the elements in this list (in proper * sequence) */ListIterator<E> listIterator();/** * Returns a list iterator over the elements in this list (in proper * sequence), starting at the specified position in the list. * The specified index indicates the first element that would be * returned by an initial call to {@link ListIterator#next next}. * An initial call to {@link ListIterator#previous previous} would * return the element with the specified index minus one. * * @param index index of the first element to be returned from the *list iterator (by a call to {@link ListIterator#next next}) * @return a list iterator over the elements in this list (in proper * sequence), starting at the specified position in the list * @throws IndexOutOfBoundsException if the index is out of range * ({@code index size()}) */ListIterator<E> listIterator(int index);// View/** * Returns a view of the portion of this list between the specified * fromIndex, inclusive, and toIndex, exclusive.(If * fromIndex and toIndex are equal, the returned list is * empty.)The returned list is backed by this list, so non-structural * changes in the returned list are reflected in this list, and vice-versa. * The returned list supports all of the optional list operations supported * by this list.

* * This method eliminates the need for explicit range operations (of * the sort that commonly exist for arrays).Any operation that expects * a list can be used as a range operation by passing a subList view * instead of a whole list.For example, the following idiom * removes a range of elements from a list: *

{@code *list.subList(from, to).clear(); * }

* Similar idioms may be constructed for indexOf and * lastIndexOf, and all of the algorithms in the * Collections class can be applied to a subList.

* * The semantics of the list returned by this method become undefined if * the backing list (i.e., this list) is structurally modified in * any way other than via the returned list.(Structural modifications are * those that change the size of this list, or otherwise perturb it in such * a fashion that iterations in progress may yield incorrect results.) * * @param fromIndex low endpoint (inclusive) of the subList * @param toIndex high endpoint (exclusive) of the subList * @return a view of the specified range within this list * @throws IndexOutOfBoundsException for an illegal endpoint index value * (fromIndex < 0 || toIndex > size || * fromIndex > toIndex) */List<E> subList(int fromIndex, int toIndex);/** * Creates a {@link Spliterator} over the elements in this list. * *

The {@code Spliterator} reports {@link Spliterator#SIZED} and * {@link Spliterator#ORDERED}.Implementations should document the * reporting of additional characteristic values. * * @implSpec * The default implementation creates a * late-binding spliterator * from the list's {@code Iterator}.The spliterator inherits the * fail-fast properties of the list's iterator. * * @implNote * The created {@code Spliterator} additionally reports * {@link Spliterator#SUBSIZED}. * * @return a {@code Spliterator} over the elements in this list * @since 1.8 */@Overridedefault Spliterator<E> spliterator() {return Spliterators.spliterator(this, Spliterator.ORDERED);}}

路漫漫其修远兮,吾将上下而求索。

© 版权声明
THE END
喜欢就支持一下吧
点赞0 分享