深度剖析问题:Could not run ‘torchvision::nms‘ with arguments from the ‘CUDA‘ backend.

问题:

使用YOLOv5进行测试的时候,报错:Could not run ‘torchvision::nms’ with arguments from the ‘CUDA’ backend.(如下图所示)

图片[1] - 深度剖析问题:Could not run ‘torchvision::nms‘ with arguments from the ‘CUDA‘ backend. - MaxSSL

解决方法:

(1)按照网上绝大多数的做法,重新安装torch和torchvision,我的另外一篇博客有讲解,注意CUDA、torch、torchvision和其他可能的安装包的版本要对应,链接直达:https://blog.csdn.net/qq_54185421/article/details/124759003?spm=1001.2014.3001.5501图片[2] - 深度剖析问题:Could not run ‘torchvision::nms‘ with arguments from the ‘CUDA‘ backend. - MaxSSLhttps://blog.csdn.net/qq_54185421/article/details/124759003?spm=1001.2014.3001.5501(2)根据后台提示的信息,分析源码,进行问题的解决,下面是解决问题的过程:

(a) ctrl + 鼠标左键,点击:

图片[3] - 深度剖析问题:Could not run ‘torchvision::nms‘ with arguments from the ‘CUDA‘ backend. - MaxSSL

(b)接下来看到如下界面:

图片[4] - 深度剖析问题:Could not run ‘torchvision::nms‘ with arguments from the ‘CUDA‘ backend. - MaxSSL

(c)分析代码行:return torch.ops.torchvision.nms(boxes, scores, iou_threshold),ctrl + 鼠标左键点击 nms,进入到下一个文件,截图如下图所示:

图片[5] - 深度剖析问题:Could not run ‘torchvision::nms‘ with arguments from the ‘CUDA‘ backend. - MaxSSL

(d)在函数nms内部做一个标志(print(22222222222222)),观察能否调用函数nms,经测试发现没有调用函数nms。

(e)总结:非极大值抑制这一环节出现了问题,导致检测的时候出现了错误。

(f)从官网或者其他网站找一个nms的代码(或者自己编写),插入到YOLOv5项目中。

(g)直到代码后,单独写成一个py文件(代码放到了文章的最后),取名my_nms.py,然后在bbox.py文件中调用,如下图所示:

图片[6] - 深度剖析问题:Could not run ‘torchvision::nms‘ with arguments from the ‘CUDA‘ backend. - MaxSSL

(h)运行结果图:

图片[7] - 深度剖析问题:Could not run ‘torchvision::nms‘ with arguments from the ‘CUDA‘ backend. - MaxSSL

my_nms.py

from torch import Tensorimport torchdef box_area(boxes: Tensor) -> Tensor:"""Computes the area of a set of bounding boxes, which are specified by its(x1, y1, x2, y2) coordinates.Arguments:boxes (Tensor[N, 4]): boxes for which the area will be computed. Theyare expected to be in (x1, y1, x2, y2) formatReturns:area (Tensor[N]): area for each box"""return (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])def box_iou(boxes1: Tensor, boxes2: Tensor) -> Tensor:"""Return intersection-over-union (Jaccard index) of boxes.Both sets of boxes are expected to be in (x1, y1, x2, y2) format.Arguments:boxes1 (Tensor[N, 4])boxes2 (Tensor[M, 4])Returns:iou (Tensor[N, M]): the NxM matrix containing the pairwise IoU values for every element in boxes1 and boxes2"""area1 = box_area(boxes1)# 每个框的面积 (N,)area2 = box_area(boxes2)# (M,)lt = torch.max(boxes1[:, None, :2], boxes2[:, :2])# [N,M,2] # N中一个和M个比较; 所以由N,M 个rb = torch.min(boxes1[:, None, 2:], boxes2[:, 2:])# [N,M,2]wh = (rb - lt).clamp(min=0)# [N,M,2]#小于0的为0clamp 钳;夹钳;inter = wh[:, :, 0] * wh[:, :, 1]# [N,M]iou = inter / (area1[:, None] + area2 - inter)return iou# NxM, boxes1中每个框和boxes2中每个框的IoU值;def nms(boxes: Tensor, scores: Tensor, iou_threshold: float):""":param boxes: [N, 4], 此处传进来的框,是经过筛选(NMS之前选取过得分TopK)之后, 在传入之前处理好的;:param scores: [N]:param iou_threshold: 0.7:return:"""keep = []# 最终保留的结果, 在boxes中对应的索引;idxs = scores.argsort()# 值从小到大的 索引while idxs.numel() > 0:# 循环直到null; numel(): 数组元素个数# 得分最大框对应的索引, 以及对应的坐标max_score_index = idxs[-1]max_score_box = boxes[max_score_index][None, :]# [1, 4]keep.append(max_score_index)if idxs.size(0) == 1:# 就剩余一个框了;breakidxs = idxs[:-1]# 将得分最大框 从索引中删除; 剩余索引对应的框 和 得分最大框 计算IoU;other_boxes = boxes[idxs]# [?, 4]ious = box_iou(max_score_box, other_boxes)# 一个框和其余框比较 1XMidxs = idxs[ious[0] <= iou_threshold]keep = idxs.new(keep)# Tensorreturn keep

>>> 如有疑问,欢迎评论区一起讨论

© 版权声明
THE END
喜欢就支持一下吧
点赞0 分享