文章目录

  • 1.rgb、depth相机标定矫正
    • 1.1.标定rgb相机
    • 1.2.标定depth相机
    • 1.3.rgb、depth相机一起标定(效果重复了,但是推荐使用)
    • 1.4.取得标定结果
      • 1.4.1.得到的标定结果的意义
    • 1.5.IR、RGB相机分别应用标定结果
      • 1.5.1.openCV应用标定结果
      • 1.5.2.ros2工程应用标定结果
  • 2.rgb、depth相机配准
    • 2.1.求外参(R、T矩阵)
  • 3.题外话

1.rgb、depth相机标定矫正

在下载来的sdk,里面没有标定的文件:ost.yaml.
需要自己进行标定、生成。

我所使用的相机型号是Astra_pro,它是一个单目结构光相机,有一个RGB摄像头+一个IR摄像头。实际上算是一个双目相机(rgb+ir)。【奥比中光Astra深度传感器工作原理】

在ros2(humble)中,需要先安装相机标定套件:

sudo apt install ros-humble-camera-*sudo apt install ros-humble-launch-testing-ament-cmake

在我的系统中,可以分别对这两个进行相机进行标定

在标定时,具体的参数(相机、话题、格子数等等)要根据你实际的情况进行填写。

1.1.标定rgb相机

执行以下命令

ros2 run camera_calibration cameracalibrator --size 6x7 --square 0.015 --no-service-check image:=/camera/color/image_raw camera:=/camera/color

1.2.标定depth相机

深度摄像头看起来和RGB摄像头差别很大,实际上有很多相似之处。就Kinect而言,其通过一个红外散斑发射器发射红外光束,光束碰到障碍物后反射回深度摄像头,然后通过返回散斑之间的几何关系计算距离。其实,Kinect的深度摄像头就是一个装了滤波片的普通摄像头,只对红外光成像的摄像头(可以这么认为)。因此要对其标定,只需用红外光源照射物体即可,LED红外光源在淘宝上就20元一个。还有一点必须注意,在拍摄红外照片时,要用黑胶带(或其他东西)将Kinect的红外发射器完全挡住,否则其发出的散斑会在红外照片中产生很多亮点,不利于棋盘角点的检测。
————————————————
原文链接:https://blog.csdn.net/aichipmunk/article/details/9264703

我这里就偷懒了,直接用自带的红外散斑发射器来标定。追求准确的同学,最好还是按照上面说的遮住红外发射器+买一个红外光源。

ros2 run camera_calibration cameracalibrator --size 6x7 --square 0.015 --no-service-check image:=/camera/ir/image_raw camera:=/camera/ir

1.3.rgb、depth相机一起标定(效果重复了,但是推荐使用)

假如已经进行了上面rgb、depth相机的分别标定,这一步其实没必要进行,效果是一样的。
但是这个一起标定的话,有个好处:在后面计算外参时,可以直接拿到同一时刻两个相机分别拍到的图像。
【ROS下采用camera_calibration进行双目相机标定】

ros2 run camera_calibration cameracalibrator --size 6x7 --square 0.015 --approximate 0.1 --no-service-check left:=/camera/ir/image_raw left_camera:=/camera/ir right:=/camera/color/image_raw right_camera:=/camera/color

1.4.取得标定结果

参考上面提到的文章进行操作后,分别可以在/tmp目录下得到标定后的数据。
上面的单目标定和双目标定,貌似没有本质的区别,都是分别得到两个相机的内参。

1.4.1.得到的标定结果的意义

各标定参数的意义:

image_width、image_height代表图片的长宽
camera_name为摄像头名
camera_matrix规定了摄像头的内部参数矩阵
distortion_model指定了畸变模型
distortion_coefficients指定畸变模型的系数
rectification_matrix为矫正矩阵,一般为单位阵
projection_matrix为外部世界坐标到像平面的投影矩阵

也可以看看这个
【相机内参标定究竟标了什么?相机内参外参保姆级教程】

1.5.IR、RGB相机分别应用标定结果

得到标定结果后,有两种方法应用标定结果。

1.5.1.openCV应用标定结果

假如需要自己进行相机的画面矫正,可以使用opencv来进行。opencv只用到上面的camera_matrix、distortion_coefficients这两组数据
【opencv畸变校正的两种方法】

1.5.2.ros2工程应用标定结果

我这里可以直接修改卖家提供的源码里面的launch.xml文件的内容,让其加载标定结果。
设置好文件路径之后,出现 “Invalid camera calibration URL”的解决办法
要加上file://前缀,格式如下:
假如出现 does not match narrow_stereo in时
将ost.yaml里面相机的名字改成和报错的一致:
由于AstraPro的rgb、ir镜头的畸变不明显,标定校准后,畸变的校准效果也不明显,这里就不贴对比图上来了。

2.rgb、depth相机配准

两个相机都标定完之后,就需要进行配准,也就是要得到从ir图到rgb图的映射(旋转矩阵R、平移矩阵T),从而得到对应深度点的颜色值。
【视觉SLAM十四讲(第二版)第5讲习题解答】

根据【Kinect深度图与RGB摄像头的标定与配准】里面分析到的,要求RT,就需要先求出外参。

2.1.求外参(R、T矩阵)

从【Opencv——相机标定】的介绍可以看到,opencv的函数calibrateCamera在根据若干组棋盘格点坐标,计算得到相机内参时,也可以得到每张图片的外参。但是我们目前是用ros的camera_calibration得到的相机内参(虽然内部也是opencv,但是camera_calibration没有给我们保存外参),所以不能够直接得到可用的外参。
但是,我们可以从前面双目标定得到的结果中选取同一时刻拍摄的两张图片(一张是rgb相机的,一张是ir相机的)
然后按照【OPENCV已知内参求外参】、【OPENCV标定外参】,利用上面的两张图片+各自相机的内参,分别算出每个相机的外参,主要代码如下:

3.题外话

由于我们用的点云来源自ir相机,所以手眼标定时,要用ir相机去参与标定,而不是rgb相机。


参考:
【1.Astra相机标定】
【【Nav2中文网】ROS2单目相机标定教程】
【深度图与彩色图的配准与对齐】
【Kinect深度图与RGB摄像头的标定与配准】
【RGBD相机实用问题】