openmmlab教程3-MMSeg 使用

文章目录

  • openmmlab教程3-MMSeg 使用
    • 3. MMSeg 使用
      • 3.1 运行demo
        • 1) 准备数据集
        • 2) 配置文件
        • 3) 训练
        • 4) 测试
      • 3.2 使用自己的网络 训练 公开数据集
        • 1) 定义自己的网络 mysegformer
        • 2) 修改模型配置文件
        • 3) 总体配置文件
        • 4) 训练
      • 3.3 使用自己的网络 训练 自己的数据集CamVid
        • 1) 准备自己的数据集
        • 2) 准备自己数据集的配置文件,继承CustomDataset即可
        • 3) 配置文件
        • 4) 准备模型的配置文件 BiSeNetV2训练
        • 5) 训练
      • 3.4 二分类数据
      • 3.5 常见问题
        • ValueError: size shape must match input shape. Input is 2D,size is 3
        • reduce_zero_label 参数
        • 其他问题

openmmlab教程3-MMSeg 使用

3. MMSeg 使用

需要基础,首先得跑过一个完整的语义分割的网络模型,这样子学起来比较轻松

  • 准备数据集 dataset
  • 数据增强
  • 准备网络模型model
  • 准备训练train
    • 设置优化器sgd,adawm
    • 设置学习策略poly,step,cosine
    • 设置损失函数CrossEntropy
    • 设置评价指标miou

3.1 运行demo

1) 准备数据集

首先下载ade20k。emmm,mmseg的ade20k和我平常用的数据长的不一样

图片[1] - openmmlab教程3-MMSeg 使用 - MaxSSL

2) 配置文件

就准备使用mmseg内置的deeplabv3plus模型来进行。

修改数据集路径

# 设置数据集的格式# dataset的类的名称dataset_type = 'ADE20KDataset'#数据集的地址data_root = r'E:\note\cv\data\ADEChallengeData2016'img_norm_cfg = dict(mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)# 裁剪大小crop_size = (512, 512)train_pipeline = [dict(type='LoadImageFromFile'),dict(type='LoadAnnotations', reduce_zero_label=True),dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)),dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),dict(type='RandomFlip', prob=0.5),dict(type='PhotoMetricDistortion'),dict(type='Normalize', **img_norm_cfg),dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255),dict(type='DefaultFormatBundle'),dict(type='Collect', keys=['img', 'gt_semantic_seg']),]test_pipeline = [dict(type='LoadImageFromFile'),dict(type='MultiScaleFlipAug',img_scale=(2048, 512),# img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],flip=False,transforms=[dict(type='Resize', keep_ratio=True),dict(type='RandomFlip'),dict(type='Normalize', **img_norm_cfg),dict(type='ImageToTensor', keys=['img']),dict(type='Collect', keys=['img']),])]data = dict(samples_per_gpu=2,workers_per_gpu=2,train=dict(type=dataset_type,data_root=data_root,img_dir='images/training',ann_dir='annotations/training',pipeline=train_pipeline),val=dict(type=dataset_type,data_root=data_root,img_dir='images/validation',ann_dir='annotations/validation',pipeline=test_pipeline),test=dict(type=dataset_type,data_root=data_root,img_dir='images/validation',ann_dir='annotations/validation',pipeline=test_pipeline))# 准备模型# norm_cfg = dict(type='SyncBN', requires_grad=True)# SyncBN 是多卡同步的BN,因为我是单卡,所以改成BN。norm_cfg = dict(type='BN', requires_grad=True)#模型是预训练 好的model = dict(type='EncoderDecoder',pretrained='open-mmlab://resnet50_v1c',backbone=dict(type='ResNetV1c',depth=50,num_stages=4,out_indices=(0, 1, 2, 3),dilations=(1, 1, 2, 4),strides=(1, 2, 1, 1),norm_cfg=norm_cfg,norm_eval=False,style='pytorch',contract_dilation=True),decode_head=dict(type='ASPPHead',in_channels=2048,in_index=3,channels=512,dilations=(1, 12, 24, 36),dropout_ratio=0.1,num_classes=150,norm_cfg=norm_cfg,align_corners=False,loss_decode=dict(type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),auxiliary_head=dict(type='FCNHead',in_channels=1024,in_index=2,channels=256,num_convs=1,concat_input=False,dropout_ratio=0.1,num_classes=150,norm_cfg=norm_cfg,align_corners=False,loss_decode=dict(type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),# model training and testing settingstrain_cfg=dict(),test_cfg=dict(mode='whole'))# 准备训练各种参数# yapf:disable#准备日志log_config = dict(interval=50,hooks=[dict(type='TextLoggerHook', by_epoch=False),# dict(type='TensorboardLoggerHook')# dict(type='PaviLoggerHook') # for internal services])# yapf:enabledist_params = dict(backend='nccl')log_level = 'INFO'load_from = Noneresume_from = Noneworkflow = [('train', 1)]cudnn_benchmark = Trueoptimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005)optimizer_config = dict()# learning policylr_config = dict(policy='poly', power=0.9, min_lr=1e-4, by_epoch=False)# runtime settingsrunner = dict(type='IterBasedRunner', max_iters=20000)checkpoint_config = dict(by_epoch=False, interval=2000)#每2000次item迭代一次evaluation = dict(interval=2000, metric='mIoU', pre_eval=True)

3) 训练

train.py。来自官方的tools/train.py

# Copyright (c) OpenMMLab. All rights reserved.import argparseimport copyimport osimport os.path as ospimport timeimport warningsimport mmcvimport torchimport torch.distributed as distfrom mmcv.cnn.utils import revert_sync_batchnormfrom mmcv.runner import get_dist_info, init_distfrom mmcv.utils import Config, DictAction, get_git_hashfrom mmseg import __version__from mmseg.apis import init_random_seed, set_random_seed, train_segmentorfrom mmseg.datasets import build_datasetfrom mmseg.models import build_segmentorfrom mmseg.utils import (collect_env, get_device, get_root_logger, setup_multi_processes)def parse_args():parser = argparse.ArgumentParser(description='Train a segmentor')parser.add_argument('config', help='train config file path')parser.add_argument('--work-dir', help='the dir to save logs and models')parser.add_argument('--load-from', help='the checkpoint file to load weights from')parser.add_argument('--resume-from', help='the checkpoint file to resume from')parser.add_argument('--no-validate',action='store_true',help='whether not to evaluate the checkpoint during training')group_gpus = parser.add_mutually_exclusive_group()group_gpus.add_argument('--gpus',type=int,help='(Deprecated, please use --gpu-id) number of gpus to use ''(only applicable to non-distributed training)')group_gpus.add_argument('--gpu-ids',type=int,nargs='+',help='(Deprecated, please use --gpu-id) ids of gpus to use ''(only applicable to non-distributed training)')group_gpus.add_argument('--gpu-id',type=int,default=0,help='id of gpu to use ''(only applicable to non-distributed training)')parser.add_argument('--seed', type=int, default=None, help='random seed')parser.add_argument('--diff_seed',action='store_true',help='Whether or not set different seeds for different ranks')parser.add_argument('--deterministic',action='store_true',help='whether to set deterministic options for CUDNN backend.')parser.add_argument('--options',nargs='+',action=DictAction,help="--options is deprecated in favor of --cfg_options' and it will "'not be supported in version v0.22.0. Override some settings in the ''used config, the key-value pair in xxx=yyy format will be merged ''into config file. If the value to be overwritten is a list, it ''should be like key="[a,b]" or key=a,b It also allows nested ''list/tuple values, e.g. key="[(a,b),(c,d)]" Note that the quotation ''marks are necessary and that no white space is allowed.')parser.add_argument('--cfg-options',nargs='+',action=DictAction,help='override some settings in the used config, the key-value pair ''in xxx=yyy format will be merged into config file. If the value to ''be overwritten is a list, it should be like key="[a,b]" or key=a,b ''It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ''Note that the quotation marks are necessary and that no white space ''is allowed.')parser.add_argument('--launcher',choices=['none', 'pytorch', 'slurm', 'mpi'],default='none',help='job launcher')parser.add_argument('--local_rank', type=int, default=0)parser.add_argument('--auto-resume',action='store_true',help='resume from the latest checkpoint automatically.')args = parser.parse_args()if 'LOCAL_RANK' not in os.environ:os.environ['LOCAL_RANK'] = str(args.local_rank)if args.options and args.cfg_options:raise ValueError('--options and --cfg-options cannot be both ''specified, --options is deprecated in favor of --cfg-options. ''--options will not be supported in version v0.22.0.')if args.options:warnings.warn('--options is deprecated in favor of --cfg-options. ''--options will not be supported in version v0.22.0.')args.cfg_options = args.optionsreturn argsdef main():args = parse_args()cfg = Config.fromfile(args.config)if args.cfg_options is not None:cfg.merge_from_dict(args.cfg_options)# set cudnn_benchmarkif cfg.get('cudnn_benchmark', False):torch.backends.cudnn.benchmark = True# work_dir is determined in this priority: CLI > segment in file > filenameif args.work_dir is not None:# update configs according to CLI args if args.work_dir is not Nonecfg.work_dir = args.work_direlif cfg.get('work_dir', None) is None:# use config filename as default work_dir if cfg.work_dir is Nonecfg.work_dir = osp.join('./work_dirs',osp.splitext(osp.basename(args.config))[0])if args.load_from is not None:cfg.load_from = args.load_fromif args.resume_from is not None:cfg.resume_from = args.resume_fromif args.gpus is not None:cfg.gpu_ids = range(1)warnings.warn('`--gpus` is deprecated because we only support ''single GPU mode in non-distributed training. ''Use `gpus=1` now.')if args.gpu_ids is not None:cfg.gpu_ids = args.gpu_ids[0:1]warnings.warn('`--gpu-ids` is deprecated, please use `--gpu-id`. ''Because we only support single GPU mode in ''non-distributed training. Use the first GPU ''in `gpu_ids` now.')if args.gpus is None and args.gpu_ids is None:cfg.gpu_ids = [args.gpu_id]cfg.auto_resume = args.auto_resume# init distributed env first, since logger depends on the dist info.if args.launcher == 'none':distributed = Falseelse:distributed = Trueinit_dist(args.launcher, **cfg.dist_params)# gpu_ids is used to calculate iter when resuming checkpoint_, world_size = get_dist_info()cfg.gpu_ids = range(world_size)# 创建日志文件夹mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir))# dump configcfg.dump(osp.join(cfg.work_dir, osp.basename(args.config)))# 获取时间timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())log_file = osp.join(cfg.work_dir, f'{timestamp}.log')logger = get_root_logger(log_file=log_file, log_level=cfg.log_level)# set multi-process settingssetup_multi_processes(cfg)# init the meta dict to record some important information such as# environment info and seed, which will be loggedmeta = dict()# log env infoenv_info_dict = collect_env()env_info = '\n'.join([f'{k}: {v}' for k, v in env_info_dict.items()])dash_line = '-' * 60 + '\n'logger.info('Environment info:\n' + dash_line + env_info + '\n' +dash_line)meta['env_info'] = env_info# log some basic infologger.info(f'Distributed training: {distributed}')logger.info(f'Config:\n{cfg.pretty_text}')# 设置随机种子cfg.device = get_device()seed = init_random_seed(args.seed, device=cfg.device)seed = seed + dist.get_rank() if args.diff_seed else seedlogger.info(f'Set random seed to {seed}, 'f'deterministic: {args.deterministic}')set_random_seed(seed, deterministic=args.deterministic)cfg.seed = seedmeta['seed'] = seedmeta['exp_name'] = osp.basename(args.config)# 创建 模型model = build_segmentor(cfg.model,train_cfg=cfg.get('train_cfg'),test_cfg=cfg.get('test_cfg'))model.init_weights()# SyncBN is not support for DPif not distributed:warnings.warn('SyncBN is only supported with DDP. To be compatible with DP, ''we convert SyncBN to BN. Please use dist_train.sh which can ''avoid this error.')model = revert_sync_batchnorm(model)logger.info(model)# 构建数据集datasets = [build_dataset(cfg.data.train)]if len(cfg.workflow) == 2:val_dataset = copy.deepcopy(cfg.data.val)val_dataset.pipeline = cfg.data.train.pipelinedatasets.append(build_dataset(val_dataset))if cfg.checkpoint_config is not None:# save mmseg version, config file content and class names in# checkpoints as meta datacfg.checkpoint_config.meta = dict(mmseg_version=f'{__version__}+{get_git_hash()[:7]}',config=cfg.pretty_text,CLASSES=datasets[0].CLASSES,PALETTE=datasets[0].PALETTE)# add an attribute for visualization convenience#模型的分类树model.CLASSES = datasets[0].CLASSES# passing checkpoint meta for saving best checkpointmeta.update(cfg.checkpoint_config.meta)train_segmentor(model,datasets,cfg,distributed=distributed,validate=(not args.no_validate),timestamp=timestamp,meta=meta)if __name__ == '__main__':main()

开始训练

python .\train.py.\config.py--work-dir E:\note\openmmlab\log --seed 0 

尴尬,说我 out memory,电脑配置不够

autodl上训练。使用autodl-tmp/autodl/openmmlab/

python /root/autodl-tmp/autodl/openmmlab/train.py /root/autodl-tmp/autodl/openmmlab/config.py --work-dir /root/autodl-tmp/autodl/openmmlab/log --seed 0

4) 测试

训练结束后,日志目录会出现,这么多的文件。加载你想训练的模型

图片[2] - openmmlab教程3-MMSeg 使用 - MaxSSL

然后cd到对应的目录 test.py是从tools/test.py复制粘贴过来的

python test.pyconfig-pascal.pylog3/iter_6000.pth --show-dir test_image

图片[3] - openmmlab教程3-MMSeg 使用 - MaxSSL

随便截取一张图片,效果还可以

图片[4] - openmmlab教程3-MMSeg 使用 - MaxSSL

终端结果显示

图片[5] - openmmlab教程3-MMSeg 使用 - MaxSSL

3.2 使用自己的网络 训练 公开数据集

1) 定义自己的网络 mysegformer

import torch.nn as nnimport torchimport torch.nn.functional as Ffrom mmseg.models.builder import BACKBONESfrom mmcv.runner import BaseModuleimport torchfrom torch import nn, Tensorfrom typing import Tuplefrom torch.nn import functional as Fimport warningsimport mathclass DropPath(nn.Module):"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).Copied from timmThis is the same as the DropConnect impl I created for EfficientNet, etc networks, however,the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted forchanging the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use'survival rate' as the argument."""def __init__(self, p: float = None):super().__init__()self.p = pdef forward(self, x: Tensor) -> Tensor:if self.p == 0. or not self.training:return xkp = 1 - self.pshape = (x.shape[0],) + (1,) * (x.ndim - 1)random_tensor = kp + torch.rand(shape, dtype=x.dtype, device=x.device)random_tensor.floor_()# binarizereturn x.div(kp) * random_tensordef _no_grad_trunc_normal_(tensor, mean, std, a, b):# Cut & paste from PyTorch official master until it's in a few official releases - RW# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdfdef norm_cdf(x):# Computes standard normal cumulative distribution functionreturn (1. + math.erf(x / math.sqrt(2.))) / 2.if (mean < a - 2 * std) or (mean > b + 2 * std):warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. ""The distribution of values may be incorrect.",stacklevel=2)with torch.no_grad():# Values are generated by using a truncated uniform distribution and# then using the inverse CDF for the normal distribution.# Get upper and lower cdf valuesl = norm_cdf((a - mean) / std)u = norm_cdf((b - mean) / std)# Uniformly fill tensor with values from [l, u], then translate to# [2l-1, 2u-1].tensor.uniform_(2 * l - 1, 2 * u - 1)# Use inverse cdf transform for normal distribution to get truncated# standard normaltensor.erfinv_()# Transform to proper mean, stdtensor.mul_(std * math.sqrt(2.))tensor.add_(mean)# Clamp to ensure it's in the proper rangetensor.clamp_(min=a, max=b)return tensordef trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):# type: (Tensor, float, float, float, float) -> Tensorr"""Fills the input Tensor with values drawn from a truncatednormal distribution. The values are effectively drawn from thenormal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`with values outside :math:`[a, b]` redrawn until they are withinthe bounds. The method used for generating the random values worksbest when :math:`a \leq \text{mean} \leq b`.Args:tensor: an n-dimensional `torch.Tensor`mean: the mean of the normal distributionstd: the standard deviation of the normal distributiona: the minimum cutoff valueb: the maximum cutoff valueExamples:>>> w = torch.empty(3, 5)>>> nn.init.trunc_normal_(w)"""return _no_grad_trunc_normal_(tensor, mean, std, a, b)############################################# backbone 部分class Attention(nn.Module):def __init__(self, dim, head, sr_ratio):"""注意力头:param dim: 输入维度:param head: 注意力头数目:param sr_ratio: 缩放倍数"""super().__init__()self.head = headself.sr_ratio = sr_ratioself.scale = (dim // head) ** -0.5self.q = nn.Linear(dim, dim)self.kv = nn.Linear(dim, dim * 2)self.proj = nn.Linear(dim, dim)if sr_ratio > 1:self.sr = nn.Conv2d(dim, dim, sr_ratio, sr_ratio)self.norm = nn.LayerNorm(dim)def forward(self, x: Tensor, H, W) -> Tensor:B, N, C = x.shapeq = self.q(x).reshape(B, N, self.head, C // self.head).permute(0, 2, 1, 3)if self.sr_ratio > 1:x = x.permute(0, 2, 1).reshape(B, C, H, W)x = self.sr(x).reshape(B, C, -1).permute(0, 2, 1)x = self.norm(x)k, v = self.kv(x).reshape(B, -1, 2, self.head, C // self.head).permute(2, 0, 3, 1, 4)attn = (q @ k.transpose(-2, -1)) * self.scaleattn = attn.softmax(dim=-1)x = (attn @ v).transpose(1, 2).reshape(B, N, C)x = self.proj(x)return xclass DWConv(nn.Module):"""深度可分离卷积。"""def __init__(self, dim):super().__init__()self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, groups=dim)def forward(self, x: Tensor, H, W) -> Tensor:B, _, C = x.shapex = x.transpose(1, 2).view(B, C, H, W)x = self.dwconv(x)return x.flatten(2).transpose(1, 2)class MLP(nn.Module):def __init__(self, c1, c2):super().__init__()self.fc1 = nn.Linear(c1, c2)self.dwconv = DWConv(c2)self.fc2 = nn.Linear(c2, c1)def forward(self, x: Tensor, H, W) -> Tensor:return self.fc2(F.gelu(self.dwconv(self.fc1(x), H, W)))class PatchEmbed(nn.Module):def __init__(self, c1=3, c2=32, patch_size=7, stride=4):"""下采样模块:param c1: 输入通道数:param c2: 输出通道数:param patch_size: patch 大小:param stride: 下采样倍数"""super().__init__()self.proj = nn.Conv2d(c1, c2, patch_size, stride, patch_size // 2)# padding=(ps[0]//2, ps[1]//2)self.norm = nn.LayerNorm(c2)def forward(self, x: Tensor) -> Tensor:x = self.proj(x)_, _, H, W = x.shapex = x.flatten(2).transpose(1, 2)x = self.norm(x)return x, H, Wclass Block(nn.Module):def __init__(self, dim, head, sr_ratio=1, dpr=0.):"""这是一个标准的transformer block。:param dim: 输入维度:param head: 注意力头的维度:param sr_ratio::param dpr:"""super().__init__()self.norm1 = nn.LayerNorm(dim)self.attn = Attention(dim, head, sr_ratio)self.drop_path = DropPath(dpr) if dpr > 0. else nn.Identity()self.norm2 = nn.LayerNorm(dim)self.mlp = MLP(dim, int(dim * 4))def forward(self, x: Tensor, H, W) -> Tensor:x = x + self.drop_path(self.attn(self.norm1(x), H, W))x = x + self.drop_path(self.mlp(self.norm2(x), H, W))return xmit_settings = {'B0': [[32, 64, 160, 256], [2, 2, 2, 2]],# [embed_dims, depths]'B1': [[64, 128, 320, 512], [2, 2, 2, 2]],'B2': [[64, 128, 320, 512], [3, 4, 6, 3]],'B3': [[64, 128, 320, 512], [3, 4, 18, 3]],'B4': [[64, 128, 320, 512], [3, 8, 27, 3]],'B5': [[64, 128, 320, 512], [3, 6, 40, 3]]}@BACKBONES.register_module()class my_MiT(BaseModule):def __init__(self, model_name: str = 'B0'):super(my_MiT, self).__init__()assert model_name in mit_settings.keys(), f"MiT model name should be in {list(mit_settings.keys())}"embed_dims, depths = mit_settings[model_name]drop_path_rate = 0.1self.embed_dims = embed_dims# patch_embedself.patch_embed1 = PatchEmbed(3, embed_dims[0], 7, 4)self.patch_embed2 = PatchEmbed(embed_dims[0], embed_dims[1], 3, 2)self.patch_embed3 = PatchEmbed(embed_dims[1], embed_dims[2], 3, 2)self.patch_embed4 = PatchEmbed(embed_dims[2], embed_dims[3], 3, 2)dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]cur = 0self.block1 = nn.ModuleList([Block(embed_dims[0], 1, 8, dpr[cur + i]) for i in range(depths[0])])self.norm1 = nn.LayerNorm(embed_dims[0])cur += depths[0]self.block2 = nn.ModuleList([Block(embed_dims[1], 2, 4, dpr[cur + i]) for i in range(depths[1])])self.norm2 = nn.LayerNorm(embed_dims[1])cur += depths[1]self.block3 = nn.ModuleList([Block(embed_dims[2], 5, 2, dpr[cur + i]) for i in range(depths[2])])self.norm3 = nn.LayerNorm(embed_dims[2])cur += depths[2]self.block4 = nn.ModuleList([Block(embed_dims[3], 8, 1, dpr[cur + i]) for i in range(depths[3])])self.norm4 = nn.LayerNorm(embed_dims[3])def forward(self, x: Tensor) -> Tensor:B = x.shape[0]# stage 1x, H, W = self.patch_embed1(x)# torch.Size([1, 3136, 64])for blk in self.block1:x = blk(x, H, W)# x= torch.Size([1, 3136, 64])x1 = self.norm1(x).reshape(B, H, W, -1).permute(0, 3, 1, 2)# ([1, 64, 56, 56])# stage 2x, H, W = self.patch_embed2(x1)for blk in self.block2:x = blk(x, H, W)x2 = self.norm2(x).reshape(B, H, W, -1).permute(0, 3, 1, 2)# stage 3x, H, W = self.patch_embed3(x2)for blk in self.block3:x = blk(x, H, W)x3 = self.norm3(x).reshape(B, H, W, -1).permute(0, 3, 1, 2)# stage 4x, H, W = self.patch_embed4(x3)for blk in self.block4:x = blk(x, H, W)x4 = self.norm4(x).reshape(B, H, W, -1).permute(0, 3, 1, 2)return [x1, x2, x3, x4]if __name__ == '__main__':x=torch.randn(1,3,224,224)model=my_MiT("B0")y=model(x)for temp in y:print(temp.shape)# backbone部分返回4个参数值# torch.Size([1, 32, 56, 56])# torch.Size([1, 64, 28, 28])# torch.Size([1, 160, 14, 14])# torch.Size([1, 256, 7, 7])

2) 修改模型配置文件

import mysegformer 一定要加,不然加载不成功,除非你是源码安装

# model settingsimport mysegformernorm_cfg = dict(type='BN', requires_grad=True)model = dict(type='EncoderDecoder',pretrained=None,backbone=dict(#自定义backbone的需要输入的3个参数type='my_MiT',# backbone需要的参数model_name="B0"),# 设置辅助头decode_head=dict(type='UPerHead',# 这里需要改一下,因为自定义的backbone ,输出的4层数据为# torch.Size([1, 32, 56, 56])# torch.Size([1, 64, 28, 28])# torch.Size([1, 160, 14, 14])# torch.Size([1, 256, 7, 7])in_channels=[32, 64, 160, 256],in_index=[0, 1, 2, 3],pool_scales=(1, 2, 3, 6),channels=512,dropout_ratio=0.1,#使用的是 pascal voc 数据集,分类数目为21num_classes=21,norm_cfg=norm_cfg,align_corners=False,loss_decode=dict(type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),# model training and testing settingstrain_cfg=dict(),test_cfg=dict(mode='whole'))

3) 总体配置文件

# 加载模型配置文件_base_ =['./config_mysegformer.py']dataset_type = 'PascalVOCDataset'data_root = r'E:\note\cv\data\VOCdevkit\VOC2012'img_norm_cfg = dict(mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)crop_size = (512, 512)train_pipeline = [dict(type='LoadImageFromFile'),dict(type='LoadAnnotations'),dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)),dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),dict(type='RandomFlip', prob=0.5),dict(type='PhotoMetricDistortion'),dict(type='Normalize', **img_norm_cfg),dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255),dict(type='DefaultFormatBundle'),dict(type='Collect', keys=['img', 'gt_semantic_seg']),]test_pipeline = [dict(type='LoadImageFromFile'),dict(type='MultiScaleFlipAug',img_scale=(2048, 512),# img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],flip=False,transforms=[dict(type='Resize', keep_ratio=True),dict(type='RandomFlip'),dict(type='Normalize', **img_norm_cfg),dict(type='ImageToTensor', keys=['img']),dict(type='Collect', keys=['img']),])]data = dict(samples_per_gpu=4,workers_per_gpu=4,train=dict(type=dataset_type,data_root=data_root,img_dir='JPEGImages',ann_dir='SegmentationClass',split='ImageSets/Segmentation/train.txt',pipeline=train_pipeline),val=dict(type=dataset_type,data_root=data_root,img_dir='JPEGImages',ann_dir='SegmentationClass',split='ImageSets/Segmentation/val.txt',pipeline=test_pipeline),test=dict(type=dataset_type,data_root=data_root,img_dir='JPEGImages',ann_dir='SegmentationClass',split='ImageSets/Segmentation/val.txt',pipeline=test_pipeline))# 准备训练各种参数# yapf:disable#准备日志log_config = dict(interval=50,hooks=[dict(type='TextLoggerHook', by_epoch=False),# dict(type='TensorboardLoggerHook')# dict(type='PaviLoggerHook') # for internal services])# yapf:enabledist_params = dict(backend='nccl')log_level = 'INFO'load_from = Noneresume_from = Noneworkflow = [('train', 1)]cudnn_benchmark = Trueoptimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005)optimizer_config = dict()# learning policylr_config = dict(policy='poly', power=0.9, min_lr=1e-4, by_epoch=False)# runtime settingsrunner = dict(type='IterBasedRunner', max_iters=20000)checkpoint_config = dict(by_epoch=False, interval=2000)#每2000次item迭代一次evaluation = dict(interval=2000, metric='mIoU', pre_eval=True)

4) 训练

python train.py config.py --work-dir /root/autodl-tmp/autodl/test1/log --seed 0

图片[6] - openmmlab教程3-MMSeg 使用 - MaxSSL

3.3 使用自己的网络 训练 自己的数据集CamVid

1) 准备自己的数据集

CamVid 数据集是由剑桥大学公开发布的城市道路场景的数据集。CamVid全称:The Cambridge-driving Labeled Video Database,它是第一个具有目标类别语义标签的视频集合。

数据集包 括 700 多张精准标注的图片用于强监督学习,可分为训练集、验证集、测试集。

同时, 在 CamVid 数据集中通常使用 11 种常用的类别来进行分割精度的评估,分别为:道路 (Road)、交通标志(Symbol)、汽车(Car)、天空(Sky)、行人道(Sidewalk)、电线杆 (Pole)、围墙(Fence)、行人(Pedestrian)、建筑物(Building)、自行车(Bicyclist)、 树木(Tree)。

图片[7] - openmmlab教程3-MMSeg 使用 - MaxSSL

图片呢,(3,720,960)大小,一共颜色有32种

图片[8] - openmmlab教程3-MMSeg 使用 - MaxSSL

名称下载链接
CamVid_32(原版)https://www.kaggle.com/datasets/carlolepelaars/camvid
CamVid_12(处理后,8位图,才能符合MMSeg的格式)https://www.kaggle.com/datasets/jokerak/camvid12

2) 准备自己数据集的配置文件,继承CustomDataset即可

更改 CLASSESnum_classes

from mmseg.datasets.builder import DATASETSfrom mmseg.datasets.custom import CustomDatasetCLASSES = ('Bicyclist', 'Building', 'Car', 'Column_Pole', 'Fence', 'Pedestrian', 'Road', 'Sidewalk', 'SignSymbol', 'Sky', 'Tree', 'backgroud')PALETTE = [[0, 128, 192], [128, 0, 0], [64, 0, 128], [192, 192, 128], [64, 64, 128], [64, 64, 0], [128, 64, 128], [0, 0, 192], [192, 128, 128], [128, 128, 128], [128, 128, 0], [0, 0, 0]]@DATASETS.register_module()class Camvid12(CustomDataset):CLASSES =('Bicyclist','Building','Car','Column_Pole','Fence','Pedestrian','Road','Sidewalk','SignSymbol','Sky','Tree','backgroud')PALETTE = [[0, 128, 192],[128, 0, 0],[64, 0, 128],[192, 192, 128], [64, 64, 128],[64, 64, 0],[128, 64, 128], [0, 0, 192], [192, 128, 128], [128, 128, 128],[128, 128, 0],[0,0,0]]def __init__(self, **kwargs):super(Camvid12, self).__init__(img_suffix='.png',seg_map_suffix='_L.png',reduce_zero_label=False,classes=CLASSES,palette=PALETTE,**kwargs)

CamVid32.py

from mmseg.datasets.builder import DATASETSfrom mmseg.datasets.custom import CustomDataset@DATASETS.register_module()class Camvid32(CustomDataset):CLASSES = ('Animal', 'Archway', 'Bicyclist', 'Bridge', 'Building', 'Car', 'CartLuggagePram', 'Child', 'Column_Pole','Fence','LaneMkgsDriv', 'LaneMkgsNonDriv', 'Misc_Text', 'MotorcycleScooter', 'OtherMoving', 'ParkingBlock','Pedestrian','Road', 'RoadShoulder', 'Sidewalk', 'SignSymbol', 'Sky', 'SUVPickupTruck', 'TrafficCone', 'TrafficLight','Train','Tree', 'Truck_Bus', 'Tunnel', 'VegetationMisc', 'Void', 'Wall')PALETTE = [[64, 128, 64], [192, 0, 128], [0, 128, 192], [0, 128, 64], [128, 0, 0], [64, 0, 128], [64, 0, 192], [192, 128, 64], [192, 192, 128], [64, 64, 128], [128, 0, 192], [192, 0, 64], [128, 128, 64], [192, 0, 192], [128, 64, 64], [64, 192, 128], [64, 64, 0], [128, 64, 128], [128, 128, 192], [0, 0, 192], [192, 128, 128], [128, 128, 128], [64, 128, 192], [0, 0, 64], [0, 64, 64], [192, 64, 128], [128, 128, 0], [192, 128, 192], [64, 0, 64], [192, 192, 0], [0, 0, 0], [64, 192, 0]]def __init__(self, **kwargs):super(Camvid32, self).__init__(img_suffix='.png',seg_map_suffix='.png',reduce_zero_label=True,**kwargs)

3) 配置文件

创建config_camvid.py

dataset_type = 'Camvid12'#数据集的地址data_root = r'E:\note\cv\data\CamVid_12'img_norm_cfg = dict(mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)# 裁剪大小crop_size = (512, 512)train_pipeline = [dict(type='LoadImageFromFile'),dict(type='LoadAnnotations', reduce_zero_label=False),dict(type='Resize', img_scale=(720, 960), ratio_range=(0.5, 2.0)),dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),dict(type='RandomFlip', prob=0.5),dict(type='PhotoMetricDistortion'),dict(type='Normalize', **img_norm_cfg),dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255),dict(type='DefaultFormatBundle'),dict(type='Collect', keys=['img', 'gt_semantic_seg']),]test_pipeline = [dict(type='LoadImageFromFile'),dict(type='MultiScaleFlipAug',img_scale=(720, 960),# img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],flip=False,transforms=[dict(type='Resize', keep_ratio=True),dict(type='RandomFlip'),dict(type='Normalize', **img_norm_cfg),dict(type='ImageToTensor', keys=['img']),dict(type='Collect', keys=['img']),])]data = dict(samples_per_gpu=8,workers_per_gpu=4,train=dict(type=dataset_type,data_root=data_root,img_dir='train',ann_dir='train_labels',pipeline=train_pipeline),# val=,# 测试集val=dict(type=dataset_type,data_root=data_root,img_dir='test',ann_dir='test_labels',pipeline=test_pipeline),test=dict(type=dataset_type,data_root=data_root,img_dir='test',ann_dir='test_labels',pipeline=test_pipeline))

下面有一些介绍

图片[9] - openmmlab教程3-MMSeg 使用 - MaxSSL

4) 准备模型的配置文件 BiSeNetV2训练

_base_ = ['./config_camvid.py',]# model settingsnorm_cfg = dict(type='BN', requires_grad=True)model = dict(type='EncoderDecoder',pretrained=None,backbone=dict(type='BiSeNetV2',detail_channels=(64, 64, 128),semantic_channels=(16, 32, 64, 128),semantic_expansion_ratio=6,bga_channels=128,out_indices=(0, 1, 2, 3, 4),init_cfg=None,align_corners=False),decode_head=dict(type='FCNHead',in_channels=128,in_index=0,channels=1024,num_convs=1,concat_input=False,dropout_ratio=0.1,num_classes=12,norm_cfg=norm_cfg,align_corners=False,loss_decode=dict(type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),auxiliary_head=[dict(type='FCNHead',in_channels=16,channels=16,num_convs=2,num_classes=12,in_index=1,norm_cfg=norm_cfg,concat_input=False,align_corners=False,loss_decode=dict(type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),dict(type='FCNHead',in_channels=32,channels=64,num_convs=2,num_classes=12,in_index=2,norm_cfg=norm_cfg,concat_input=False,align_corners=False,loss_decode=dict(type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),dict(type='FCNHead',in_channels=64,channels=256,num_convs=2,num_classes=12,in_index=3,norm_cfg=norm_cfg,concat_input=False,align_corners=False,loss_decode=dict(type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),dict(type='FCNHead',in_channels=128,channels=1024,num_convs=2,num_classes=19,in_index=4,norm_cfg=norm_cfg,concat_input=False,align_corners=False,loss_decode=dict(type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),],# model training and testing settingstrain_cfg=dict(),test_cfg=dict(mode='whole'))# yapf:disablelog_config = dict(interval=50,hooks=[dict(type='TextLoggerHook', by_epoch=False),# dict(type='TensorboardLoggerHook')# dict(type='PaviLoggerHook') # for internal services])# yapf:enabledist_params = dict(backend='nccl')log_level = 'INFO'load_from = Noneresume_from = Noneworkflow = [('train', 1)]cudnn_benchmark = True# optimizeroptimizer = dict(type='SGD', lr=0.05, momentum=0.9, weight_decay=0.0005)optimizer_config = dict()# learning policylr_config = dict(policy='poly', power=0.9, min_lr=1e-4, by_epoch=False,warmup='linear', warmup_iters=1000)# runtime settingsrunner = dict(type='IterBasedRunner', max_iters=160000)checkpoint_config = dict(by_epoch=False, interval=16000)evaluation = dict(interval=16000, metric='mIoU', pre_eval=True)

5) 训练

python train.py config.py --work-dir /root/openmmlab/9-1log/ --seed 0

图片[10] - openmmlab教程3-MMSeg 使用 - MaxSSL

3.4 二分类数据

MMSegmentation跑自己的数据进行二分类_LiChengwei47的博客-CSDN博客_mmsegmentation自己的数据

3.5 常见问题

ValueError: size shape must match input shape. Input is 2D,size is 3

在用mmsegmentation跑自己的数据集时,为啥一直会报这个错啊?

图片[11] - openmmlab教程3-MMSeg 使用 - MaxSSL

解答

是因为 label图是24,或者32位图,加载图片的时候,会变成[3,224,224]。size就是3。

所以需要把你的图片变成8位图

图片[12] - openmmlab教程3-MMSeg 使用 - MaxSSL

reduce_zero_label 参数

一定要注意,如果label中0是背景,且不进入计算损失的话,一定得加

写给 MMSegmentation 工具箱新手的避坑指南 – 知乎 (zhihu.com)

其他问题

[写给 MMSegmentation 工具箱新手的避坑指南 – 知乎 (zhihu.com)](

© 版权声明
THE END
喜欢就支持一下吧
点赞0 分享