大家好,今天和各位分享一下深度强化学习中的 Actor-Critic 演员评论家算法,Actor-Critic 算法是一种综合了策略迭代和价值迭代的集成算法。我将使用该模型结合 OpenAI 中的 Gym 环境完成一个小游戏,完整代码可以从我的 GitHub 中获得:
https://github.com/LiSir-HIT/Reinforcement-Learning/tree/main/Model
1. 算法原理
根据 agent 选择动作方法的不同,可以把强化学习方法分为三大类:行动者方法(Actor-only),评论家方法(Critic-only),行动者评论家方法(Actor-critic)。
行动者方法中不会对值函数进行估计,直接按照当前策略和环境进行交互。通过交互后得到的立即奖赏值直接优化当前策略。例如:Policy Gradients
评论家方法没有需要维护的策略,评论家方法的策略是直接通过当前的值函数获得的,并通过值函数获得的策略与环境交互。交互得到的立即奖赏值用来优化当前值函数。例如:DQN
行动者评论家方法是由行动者和评论家两个部分构成。行动者用于选择动作,评论家评论选择动作的好坏。行动者选择动作的方法不是依据当前的值函数,而是依据存储的策略。评论家的评论一般采用时间差分误差的形式,时间差分误差是根据当前的值函数计算获得的。时间差分误差是是评论家的唯一输出,并且驱动了行动者和评论家之间的所有学习。
2. 公式推导
根据策略梯度算法的定义,策略优化目标函数如下:
令 ,,称为优势函数。采用 n 步时序差分法求解时,可以表示如下:
当 n 为一个完整的状态序列大小时,该算法与蒙特卡洛算法等价。
Actor-Critic 算法一共分为两个部分,Critic 和 Actor 网络。
Critic 是评判网络,当输入为环境状态时,它可以评估当前状态的价值,当输入为环境状态和采取的动作时,它可以评估当前状态下采取该动作的价值。
Actor 为策略网络,以当前的状态作为输入,输出为动作的概率分布或者连续动作值,再由 Critic 网络来评价该动作的好坏从而调整策略。Actor-Critic算法将动作价值评估和策略更新过程分开,Actor 可以对当前环境进行充分探索并缓慢进行策略更新,Critic 只需要负责评价策略的好坏,所以这种集成算法有相对较好的性能。
Critic 网络的输入一般有两种形式,(1)如果输入为状态,则该评价网络的作用为评价当前状态价值;(2)如果输入为状态和动作,则该评价网络的作用为评价当前状态的动作价值。
如果评价网络 Critic 为状态价值 statevalue 的评价网络,输入为状态。Critic 网络的损失函数计算公式采用均方误差损失函数,即 TD 误差值的累计平方值的均值,表达式如下:
Actor 网络的优化目标可以如下:
其中,代表最优策略,由于该公式表达的含义为当 TD 误差值大于 0 时增强该动作选择概率,当 TD 误差值小于 0 时减小该动作选择概率,所以目标为最小化损失函数
如果评价网络 Critic 为动作价值 action value 的评价网络,即输入为状态和动作,则Critic 网络的损失函数如下:
其中,的表达式变换如下:
Actor-Critic 算法流程如下:
3. 代码实现
Actor-Critic 模型部分的实现方式如下:
import torchfrom torch import nnfrom torch.nn import functional as Fimport numpy as np# ------------------------------------ ## 策略梯度Actor,动作选择# ------------------------------------ #class PolicyNet(nn.Module):def __init__(self, n_states, n_hiddens, n_actions):super(PolicyNet, self).__init__()self.fc1 = nn.Linear(n_states, n_hiddens)self.fc2 = nn.Linear(n_hiddens, n_actions)# 前向传播def forward(self, x):x = self.fc1(x)# [b,n_states]-->[b,n_hiddens]x = F.relu(x)x = self.fc2(x)# [b,n_hiddens]-->[b,n_actions]# 每个状态对应的动作的概率x = F.softmax(x, dim=1)# [b,n_actions]-->[b,n_actions]return x# ------------------------------------ ## 值函数Critic,动作评估输出 shape=[b,1]# ------------------------------------ #class ValueNet(nn.Module):def __init__(self, n_states, n_hiddens):super(ValueNet, self).__init__()self.fc1 = nn.Linear(n_states, n_hiddens)self.fc2 = nn.Linear(n_hiddens, 1)# 前向传播def forward(self, x):x = self.fc1(x)# [b,n_states]-->[b,n_hiddens]x = F.relu(x)x = self.fc2(x)# [b,n_hiddens]-->[b,1]return x# ------------------------------------ ## Actor-Critic# ------------------------------------ #class ActorCritic:def __init__(self, n_states, n_hiddens, n_actions, actor_lr, critic_lr, gamma):# 属性分配self.gamma = gamma# 实例化策略网络self.actor = PolicyNet(n_states, n_hiddens, n_actions)# 实例化价值网络self.critic = ValueNet(n_states, n_hiddens)# 策略网络的优化器self.actor_optimizer = torch.optim.Adam(self.actor.parameters(), lr=actor_lr)# 价值网络的优化器self.critic_optimizer = torch.optim.Adam(self.critic.parameters(), lr=critic_lr)# 动作选择def take_action(self, state):# 维度变换numpy[n_states]-->[1,n_sates]-->tensorstate = torch.tensor(state[np.newaxis, :])# 动作价值函数,当前状态下各个动作的概率probs = self.actor(state)# 创建以probs为标准类型的数据分布action_dist = torch.distributions.Categorical(probs)# 随机选择一个动作 tensor-->intaction = action_dist.sample().item()return action# 模型更新def update(self, transition_dict):# 训练集states = torch.tensor(transition_dict['states'], dtype=torch.float)actions = torch.tensor(transition_dict['actions']).view(-1,1)rewards = torch.tensor(transition_dict['rewards'], dtype=torch.float).view(-1,1)next_states = torch.tensor(transition_dict['next_states'], dtype=torch.float)dones = torch.tensor(transition_dict['dones'], dtype=torch.float).view(-1,1)# 预测的当前时刻的state_valuetd_value = self.critic(states)# 目标的当前时刻的state_valuetd_target = rewards + self.gamma * self.critic(next_states) * (1-dones)# 时序差分的误差计算,目标的state_value与预测的state_value之差td_delta = td_target - td_value# 对每个状态对应的动作价值用log函数log_probs = torch.log(self.actor(states).gather(1, actions))# 策略梯度损失actor_loss = torch.mean(-log_probs * td_delta.detach())# 值函数损失,预测值和目标值之间critic_loss = torch.mean(F.mse_loss(self.critic(states), td_target.detach()))# 优化器梯度清0self.actor_optimizer.zero_grad()# 策略梯度网络的优化器self.critic_optimizer.zero_grad()# 价值网络的优化器# 反向传播actor_loss.backward()critic_loss.backward()# 参数更新self.actor_optimizer.step()self.critic_optimizer.step()
4. 案例演示
我们使用 OpenAI 的 gym 库中的环境,完成一个小案例。我们的目的是左右移动黑色小车使得黄色的杆子保持竖直。状态 state 的维度为 4,动作 action 有 2 个。
环境交互与训练部分的代码如下:
import numpy as npimport matplotlib.pyplot as pltimport gymimport torchfrom RL_brain import ActorCritic# ----------------------------------------- ## 参数设置# ----------------------------------------- #num_episodes = 100# 总迭代次数gamma = 0.9# 折扣因子actor_lr = 1e-3# 策略网络的学习率critic_lr = 1e-2# 价值网络的学习率n_hiddens = 16# 隐含层神经元个数env_name = 'CartPole-v1'return_list = []# 保存每个回合的return# ----------------------------------------- ## 环境加载# ----------------------------------------- #env = gym.make(env_name, render_mode="human")n_states = env.observation_space.shape[0]# 状态数 4n_actions = env.action_space.n# 动作数 2# ----------------------------------------- ## 模型构建# ----------------------------------------- #agent = ActorCritic(n_states=n_states,# 状态数n_hiddens=n_hiddens,# 隐含层数n_actions=n_actions,# 动作数actor_lr=actor_lr,# 策略网络学习率critic_lr=critic_lr,# 价值网络学习率gamma=gamma)# 折扣因子# ----------------------------------------- ## 训练--回合更新# ----------------------------------------- #for i in range(num_episodes):state = env.reset()[0]# 环境重置done = False# 任务完成的标记episode_return = 0# 累计每回合的reward# 构造数据集,保存每个回合的状态数据transition_dict = {'states': [],'actions': [],'next_states': [],'rewards': [],'dones': [],}while not done:action = agent.take_action(state)# 动作选择next_state, reward, done, _, _= env.step(action)# 环境更新# 保存每个时刻的状态\动作\...transition_dict['states'].append(state)transition_dict['actions'].append(action)transition_dict['next_states'].append(next_state)transition_dict['rewards'].append(reward)transition_dict['dones'].append(done)# 更新状态state = next_state# 累计回合奖励episode_return += reward# 保存每个回合的returnreturn_list.append(episode_return)# 模型训练agent.update(transition_dict)# 打印回合信息print(f'iter:{i}, return:{np.mean(return_list[-10:])}')# -------------------------------------- ## 绘图# -------------------------------------- #plt.plot(return_list)plt.title('return')plt.show()
绘制每回合的回报 return