图像融合评估指标Python版

这篇博客利用Python把大部分图像融合指标基于图像融合评估指标复现了,从而方便大家更好的使用Python进行指标计算,以及一些I/O 操作。除了几个特征互信息的指标没有成功复现之外,其他指标均可以通过这篇博客提到的Python程序计算得到,其中SSIMMS_SSIM是基于PyTorch实现的可能无法与原来的程序保持一致,同时使用了一些矩阵运算加速了NabfQabf的计算。但不幸的是在计算VIF时设计大量的卷积运算,而博主在Python中采用cipy.signal.convolve2d来替换MATLAB中的filter函数,导致时间消耗较大,如果你不需要计算VIF可以直接注释掉相关语句 并设置VIF=1即可。

完整demo下载地址:https://download.csdn.net/download/fovever_/87547835

在原来的MATLAB程序中由于没有充分考虑数据类型的影响,在计算SD是会由于uint8数据类型的限制,但是部分数据被截断,在Python中已经解决了这个Bug,同时也在原来的MATLAB版本中修正了这个问题。

在Python版的程序中,只有计算EN和MI是使用的是int型数据,其他指标均使用float型数据。此外除了计算MSE和PSNR时将数据归一化到[0,1]之外,计算其他指标时,数据范围均为[0,255]。

评估指标缩写
信息熵EN
空间频率SF
标准差SD
峰值信噪比PSNR
均方误差MSE
互信息MI
视觉保真度VIF
平均梯度AG
相关系数CC
差异相关和SCD
基于梯度的融合性能Qabf
结构相似度测量SSIM
多尺度结构相似度测量MS-SSIM
基于噪声评估的融合性能Nabf

性能评估指标主要分为四类,分别是基于信息论的评估指标,主要包括** EN、MI、PSNR**、基于结构相似性的评估指标,主要包括SSIM、MS_SSIM、MSE基于图像特征的评估指标, 主要包括SF、SD、AG基于人类视觉感知的评估指标,主要包括VIF以及基于源图像与生成图像的评估指标,主要包括CC、SCD、Qabf、Nabf

接下来是部分程序:

单张图像测试程序: eval_one_image.py

from PIL import Imagefrom Metric import *from time import timeimport warningswarnings.filterwarnings("ignore")def evaluation_one(ir_name, vi_name, f_name):    f_img = Image.open(f_name).convert('L')    ir_img = Image.open(ir_name).convert('L')    vi_img = Image.open(vi_name).convert('L')    f_img_int = np.array(f_img).astype(np.int32)    f_img_double = np.array(f_img).astype(np.float32)    ir_img_int = np.array(ir_img).astype(np.int32)    ir_img_double = np.array(ir_img).astype(np.float32)    vi_img_int = np.array(vi_img).astype(np.int32)    vi_img_double = np.array(vi_img).astype(np.float32)    EN = EN_function(f_img_int)    MI = MI_function(ir_img_int, vi_img_int, f_img_int, gray_level=256)    SF = SF_function(f_img_double)    SD = SD_function(f_img_double)    AG = AG_function(f_img_double)    PSNR = PSNR_function(ir_img_double, vi_img_double, f_img_double)    MSE = MSE_function(ir_img_double, vi_img_double, f_img_double)    VIF = VIF_function(ir_img_double, vi_img_double, f_img_double)    CC = CC_function(ir_img_double, vi_img_double, f_img_double)    SCD = SCD_function(ir_img_double, vi_img_double, f_img_double)    Qabf = Qabf_function(ir_img_double, vi_img_double, f_img_double)    Nabf = Nabf_function(ir_img_double, vi_img_double, f_img_double)    SSIM = SSIM_function(ir_img_double, vi_img_double, f_img_double)    MS_SSIM = MS_SSIM_function(ir_img_double, vi_img_double, f_img_double)    return EN, MI, SF, AG, SD, CC, SCD, VIF, MSE, PSNR, Qabf, Nabf, SSIM, MS_SSIMif __name__ == '__main__':    f_name = r'E:\Desktop\metric\Test\Results\TNO\GTF\01.png'    ir_name = r'E:\Desktop\metric\Test\datasets\TNO\ir\01.png'    vi_name = r'E:\Desktop\metric\Test\datasets\TNO\vi\01.png'    EN, MI, SF, AG, SD, CC, SCD, VIF, MSE, PSNR, Qabf, Nabf, SSIM, MS_SSIM = evaluation_one(ir_name, vi_name, f_name)    print('EN:', round(EN, 4))    print('MI:', round(MI, 4))    print('SF:', round(SF, 4))    print('AG:', round(AG, 4))    print('SD:', round(SD, 4))    print('CC:', round(CC, 4))    print('SCD:', round(SCD, 4))    print('VIF:', round(VIF, 4))    print('MSE:', round(MSE, 4))    print('PSNR:', round(PSNR, 4))    print('Qabf:', round(Qabf, 4))    print('Nabf:', round(Nabf, 4))    print('SSIM:', round(SSIM, 4))    print('MS_SSIM:', round(MS_SSIM, 4))

测试一个方法中所有图像指标的程序: eval_one_method.py

import numpy as npfrom PIL import Imagefrom Metric import *from natsort import natsortedfrom tqdm import tqdmimport osimport statisticsimport warningsfrom openpyxl import Workbook, load_workbookfrom openpyxl.utils import get_column_letterwarnings.filterwarnings("ignore")def write_excel(excel_name='metric.xlsx', worksheet_name='VIF', column_index=0, data=None):    try:        workbook = load_workbook(excel_name)    except FileNotFoundError:    # 文件不存在,创建新的 Workbook        workbook = Workbook()    # 获取或创建一个工作表    if worksheet_name in workbook.sheetnames:        worksheet = workbook[worksheet_name]    else:        worksheet = workbook.create_sheet(title=worksheet_name)    # 在指定列中插入数据    column = get_column_letter(column_index + 1)    for i, value in enumerate(data):        cell = worksheet[column + str(i+1)]        cell.value = value            # 保存文件    workbook.save(excel_name)def evaluation_one(ir_name, vi_name, f_name):    f_img = Image.open(f_name).convert('L')    ir_img = Image.open(ir_name).convert('L')    vi_img = Image.open(vi_name).convert('L')    f_img_int = np.array(f_img).astype(np.int32)    f_img_double = np.array(f_img).astype(np.float32)    ir_img_int = np.array(ir_img).astype(np.int32)    ir_img_double = np.array(ir_img).astype(np.float32)    vi_img_int = np.array(vi_img).astype(np.int32)    vi_img_double = np.array(vi_img).astype(np.float32)    EN = EN_function(f_img_int)    MI = MI_function(ir_img_int, vi_img_int, f_img_int, gray_level=256)    SF = SF_function(f_img_double)    SD = SD_function(f_img_double)    AG = AG_function(f_img_double)    PSNR = PSNR_function(ir_img_double, vi_img_double, f_img_double)    MSE = MSE_function(ir_img_double, vi_img_double, f_img_double)    VIF = VIF_function(ir_img_double, vi_img_double, f_img_double)    CC = CC_function(ir_img_double, vi_img_double, f_img_double)    SCD = SCD_function(ir_img_double, vi_img_double, f_img_double)    Qabf = Qabf_function(ir_img_double, vi_img_double, f_img_double)    Nabf = Nabf_function(ir_img_double, vi_img_double, f_img_double)    SSIM = SSIM_function(ir_img_double, vi_img_double, f_img_double)    MS_SSIM = MS_SSIM_function(ir_img_double, vi_img_double, f_img_double)    return EN, MI, SF, AG, SD, CC, SCD, VIF, MSE, PSNR, Qabf, Nabf, SSIM, MS_SSIMif __name__ == '__main__':    with_mean = True    EN_list = []    MI_list = []    SF_list = []    AG_list = []    SD_list = []    CC_list = []    SCD_list = []    VIF_list = []    MSE_list = []    PSNR_list = []    Qabf_list = []    Nabf_list = []    SSIM_list = []    MS_SSIM_list = []    filename_list = ['']    dataset_name = 'test_imgs'    ir_dir = os.path.join('..\datasets', dataset_name, 'ir')    vi_dir = os.path.join('..\datasets', dataset_name, 'vi')    Method = 'SeAFusion'    f_dir = os.path.join('..\Results', dataset_name, Method)    save_dir = '..\Metric'    os.makedirs(save_dir, exist_ok=True)    metric_save_name = os.path.join(save_dir, 'metric_{}_{}.xlsx'.format(dataset_name, Method))    filelist = natsorted(os.listdir(ir_dir))    eval_bar = tqdm(filelist)    for _, item in enumerate(eval_bar):        ir_name = os.path.join(ir_dir, item)        vi_name = os.path.join(vi_dir, item)        f_name = os.path.join(f_dir, item)        EN, MI, SF, AG, SD, CC, SCD, VIF, MSE, PSNR, Qabf, Nabf, SSIM, MS_SSIM = evaluation_one(ir_name, vi_name, f_name)        EN_list.append(EN)        MI_list.append(MI)        SF_list.append(SF)        AG_list.append(AG)        SD_list.append(SD)        CC_list.append(CC)        SCD_list.append(SCD)        VIF_list.append(VIF)        MSE_list.append(MSE)        PSNR_list.append(PSNR)        Qabf_list.append(Qabf)        Nabf_list.append(Nabf)        SSIM_list.append(SSIM)        MS_SSIM_list.append(MS_SSIM)        filename_list.append(item)        eval_bar.set_description("{} | {}".format(Method, item))    if with_mean:    # 添加均值        EN_list.append(np.mean(EN_list))        MI_list.append(np.mean(MI_list))        SF_list.append(np.mean(SF_list))        AG_list.append(np.mean(AG_list))        SD_list.append(np.mean(SD_list))        CC_list.append(np.mean(CC_list))        SCD_list.append(np.mean(SCD_list))        VIF_list.append(np.mean(VIF_list))        MSE_list.append(np.mean(MSE_list))        PSNR_list.append(np.mean(PSNR_list))        Qabf_list.append(np.mean(Qabf_list))        Nabf_list.append(np.mean(Nabf_list))        SSIM_list.append(np.mean(SSIM_list))        MS_SSIM_list.append(np.mean(MS_SSIM_list))        filename_list.append('mean')        ## 添加标准差        EN_list.append(np.std(EN_list))        MI_list.append(np.std(MI_list))        SF_list.append(np.std(SF_list))        AG_list.append(np.std(AG_list))        SD_list.append(np.std(SD_list))        CC_list.append(np.std(CC_list[:-1]))        SCD_list.append(np.std(SCD_list))        VIF_list.append(np.std(VIF_list))        MSE_list.append(np.std(MSE_list))        PSNR_list.append(np.std(PSNR_list))        Qabf_list.append(np.std(Qabf_list))        Nabf_list.append(np.std(Nabf_list))        SSIM_list.append(np.std(SSIM_list))        MS_SSIM_list.append(np.std(MS_SSIM_list))        filename_list.append('std')    ## 保留三位小数    EN_list = [round(x, 3) for x in EN_list]    MI_list = [round(x, 3) for x in MI_list]    SF_list = [round(x, 3) for x in SF_list]    AG_list = [round(x, 3) for x in AG_list]    SD_list = [round(x, 3) for x in SD_list]    CC_list = [round(x, 3) for x in CC_list]    SCD_list = [round(x, 3) for x in SCD_list]    VIF_list = [round(x, 3) for x in VIF_list]    MSE_list = [round(x, 3) for x in MSE_list]    PSNR_list = [round(x, 3) for x in PSNR_list]    Qabf_list = [round(x, 3) for x in Qabf_list]    Nabf_list = [round(x, 3) for x in Nabf_list]    SSIM_list = [round(x, 3) for x in SSIM_list]    MS_SSIM_list = [round(x, 3) for x in MS_SSIM_list]    EN_list.insert(0, '{}'.format(Method))    MI_list.insert(0, '{}'.format(Method))    SF_list.insert(0, '{}'.format(Method))    AG_list.insert(0, '{}'.format(Method))    SD_list.insert(0, '{}'.format(Method))    CC_list.insert(0, '{}'.format(Method))    SCD_list.insert(0, '{}'.format(Method))    VIF_list.insert(0, '{}'.format(Method))    MSE_list.insert(0, '{}'.format(Method))    PSNR_list.insert(0, '{}'.format(Method))    Qabf_list.insert(0, '{}'.format(Method))    Nabf_list.insert(0, '{}'.format(Method))    SSIM_list.insert(0, '{}'.format(Method))    MS_SSIM_list.insert(0, '{}'.format(Method))    write_excel(metric_save_name, 'EN', 0, filename_list)    write_excel(metric_save_name, "MI", 0, filename_list)    write_excel(metric_save_name, "SF", 0, filename_list)    write_excel(metric_save_name, "AG", 0, filename_list)    write_excel(metric_save_name, "SD", 0, filename_list)    write_excel(metric_save_name, "CC", 0, filename_list)    write_excel(metric_save_name, "SCD", 0, filename_list)    write_excel(metric_save_name, "VIF", 0, filename_list)    write_excel(metric_save_name, "MSE", 0, filename_list)    write_excel(metric_save_name, "PSNR", 0, filename_list)    write_excel(metric_save_name, "Qabf", 0, filename_list)    write_excel(metric_save_name, "Nabf", 0, filename_list)    write_excel(metric_save_name, "SSIM", 0, filename_list)    write_excel(metric_save_name, "MS_SSIM", 0, filename_list)    write_excel(metric_save_name, 'EN', 1, EN_list)    write_excel(metric_save_name, 'MI', 1, MI_list)    write_excel(metric_save_name, 'SF', 1, SF_list)    write_excel(metric_save_name, 'AG', 1, AG_list)    write_excel(metric_save_name, 'SD', 1, SD_list)    write_excel(metric_save_name, 'CC', 1, CC_list)    write_excel(metric_save_name, 'SCD', 1, SCD_list)    write_excel(metric_save_name, 'VIF', 1, VIF_list)    write_excel(metric_save_name, 'MSE', 1, MSE_list)    write_excel(metric_save_name, 'PSNR', 1, PSNR_list)    write_excel(metric_save_name, 'Qabf', 1, Qabf_list)    write_excel(metric_save_name, 'Nabf', 1, Nabf_list)    write_excel(metric_save_name, 'SSIM', 1, SSIM_list)    write_excel(metric_save_name, 'MS_SSIM', 1, MS_SSIM_list)

测试一个数据集上所有对比算法的指标的程序:eval_multi_method.py

import numpy as npfrom PIL import Imagefrom Metric import *from natsort import natsortedfrom tqdm import tqdmimport osimport statisticsimport warningsfrom openpyxl import Workbook, load_workbookfrom openpyxl.utils import get_column_letterwarnings.filterwarnings("ignore")def write_excel(excel_name='metric.xlsx', worksheet_name='VIF', column_index=0, data=None):    try:        workbook = load_workbook(excel_name)    except FileNotFoundError:    # 文件不存在,创建新的 Workbook        workbook = Workbook()    # 获取或创建一个工作表    if worksheet_name in workbook.sheetnames:        worksheet = workbook[worksheet_name]    else:        worksheet = workbook.create_sheet(title=worksheet_name)    # 在指定列中插入数据    column = get_column_letter(column_index + 1)    for i, value in enumerate(data):        cell = worksheet[column + str(i+1)]        cell.value = value    # 保存文件    workbook.save(excel_name)def evaluation_one(ir_name, vi_name, f_name):    f_img = Image.open(f_name).convert('L')    ir_img = Image.open(ir_name).convert('L')    vi_img = Image.open(vi_name).convert('L')    f_img_int = np.array(f_img).astype(np.int32)    f_img_double = np.array(f_img).astype(np.float32)    ir_img_int = np.array(ir_img).astype(np.int32)    ir_img_double = np.array(ir_img).astype(np.float32)    vi_img_int = np.array(vi_img).astype(np.int32)    vi_img_double = np.array(vi_img).astype(np.float32)    EN = EN_function(f_img_int)    MI = MI_function(ir_img_int, vi_img_int, f_img_int, gray_level=256)    SF = SF_function(f_img_double)    SD = SD_function(f_img_double)    AG = AG_function(f_img_double)    PSNR = PSNR_function(ir_img_double, vi_img_double, f_img_double)    MSE = MSE_function(ir_img_double, vi_img_double, f_img_double)    VIF = VIF_function(ir_img_double, vi_img_double, f_img_double)    CC = CC_function(ir_img_double, vi_img_double, f_img_double)    SCD = SCD_function(ir_img_double, vi_img_double, f_img_double)    Qabf = Qabf_function(ir_img_double, vi_img_double, f_img_double)    Nabf = Nabf_function(ir_img_double, vi_img_double, f_img_double)    SSIM = SSIM_function(ir_img_double, vi_img_double, f_img_double)    MS_SSIM = MS_SSIM_function(ir_img_double, vi_img_double, f_img_double)    return EN, MI, SF, AG, SD, CC, SCD, VIF, MSE, PSNR, Qabf, Nabf, SSIM, MS_SSIMif __name__ == '__main__':    with_mean = True    dataroot = r'../datasets'    results_root = '../Results'    dataset = 'TNO'    ir_dir = os.path.join(dataroot, dataset, 'ir')    vi_dir = os.path.join(dataroot, dataset, 'vi')    f_dir = os.path.join(results_root, dataset)    save_dir = '../Metric'    os.makedirs(save_dir, exist_ok=True)    metric_save_name = os.path.join(save_dir, 'metric_{}.xlsx'.format(dataset))    filelist = natsorted(os.listdir(ir_dir))    Method_list = ['GTF', 'DIDFuse', 'RFN-Nest', 'FusionGAN', 'TarDAL', 'UMF-CMGR', 'SeAFusion', 'SwinFusion', 'U2Fusion', 'PSF']    for i, Method in enumerate(Method_list):        EN_list = []        MI_list = []        SF_list = []        AG_list = []        SD_list = []        CC_list = []        SCD_list = []        VIF_list = []        MSE_list = []        PSNR_list = []        Qabf_list = []        Nabf_list = []        SSIM_list = []        MS_SSIM_list = []        filename_list = ['']        sub_f_dir = os.path.join(f_dir, Method)        eval_bar = tqdm(filelist)        for _, item in enumerate(eval_bar):            ir_name = os.path.join(ir_dir, item)            vi_name = os.path.join(vi_dir, item)            f_name = os.path.join(sub_f_dir, item)            print(ir_name, vi_name, f_name)            EN, MI, SF, AG, SD, CC, SCD, VIF, MSE, PSNR, Qabf, Nabf, SSIM, MS_SSIM = evaluation_one(ir_name, vi_name, f_name)            EN_list.append(EN)            MI_list.append(MI)            SF_list.append(SF)            AG_list.append(AG)            SD_list.append(SD)            CC_list.append(CC)            SCD_list.append(SCD)            VIF_list.append(VIF)            MSE_list.append(MSE)            PSNR_list.append(PSNR)            Qabf_list.append(Qabf)            Nabf_list.append(Nabf)            SSIM_list.append(SSIM)            MS_SSIM_list.append(MS_SSIM)            filename_list.append(item)            eval_bar.set_description("{} | {}".format(Method, item))        if with_mean:        # 添加均值            EN_list.append(np.mean(EN_list))            MI_list.append(np.mean(MI_list))            SF_list.append(np.mean(SF_list))            AG_list.append(np.mean(AG_list))            SD_list.append(np.mean(SD_list))            CC_list.append(np.mean(CC_list))            SCD_list.append(np.mean(SCD_list))            VIF_list.append(np.mean(VIF_list))            MSE_list.append(np.mean(MSE_list))            PSNR_list.append(np.mean(PSNR_list))            Qabf_list.append(np.mean(Qabf_list))            Nabf_list.append(np.mean(Nabf_list))            SSIM_list.append(np.mean(SSIM_list))            MS_SSIM_list.append(np.mean(MS_SSIM_list))            filename_list.append('mean')            ## 添加标准差            EN_list.append(np.std(EN_list))            MI_list.append(np.std(MI_list))            SF_list.append(np.std(SF_list))            AG_list.append(np.std(AG_list))            SD_list.append(np.std(SD_list))            CC_list.append(np.std(CC_list[:-1]))            SCD_list.append(np.std(SCD_list))            VIF_list.append(np.std(VIF_list))            MSE_list.append(np.std(MSE_list))            PSNR_list.append(np.std(PSNR_list))            Qabf_list.append(np.std(Qabf_list))            Nabf_list.append(np.std(Nabf_list))            SSIM_list.append(np.std(SSIM_list))            MS_SSIM_list.append(np.std(MS_SSIM_list))            filename_list.append('std')        ## 保留三位小数        EN_list = [round(x, 3) for x in EN_list]        MI_list = [round(x, 3) for x in MI_list]        SF_list = [round(x, 3) for x in SF_list]        AG_list = [round(x, 3) for x in AG_list]        SD_list = [round(x, 3) for x in SD_list]        CC_list = [round(x, 3) for x in CC_list]        SCD_list = [round(x, 3) for x in SCD_list]        VIF_list = [round(x, 3) for x in VIF_list]        MSE_list = [round(x, 3) for x in MSE_list]        PSNR_list = [round(x, 3) for x in PSNR_list]        Qabf_list = [round(x, 3) for x in Qabf_list]        Nabf_list = [round(x, 3) for x in Nabf_list]        SSIM_list = [round(x, 3) for x in SSIM_list]        MS_SSIM_list = [round(x, 3) for x in MS_SSIM_list]        EN_list.insert(0, '{}'.format(Method))        MI_list.insert(0, '{}'.format(Method))        SF_list.insert(0, '{}'.format(Method))        AG_list.insert(0, '{}'.format(Method))        SD_list.insert(0, '{}'.format(Method))        CC_list.insert(0, '{}'.format(Method))        SCD_list.insert(0, '{}'.format(Method))        VIF_list.insert(0, '{}'.format(Method))        MSE_list.insert(0, '{}'.format(Method))        PSNR_list.insert(0, '{}'.format(Method))        Qabf_list.insert(0, '{}'.format(Method))        Nabf_list.insert(0, '{}'.format(Method))        SSIM_list.insert(0, '{}'.format(Method))        MS_SSIM_list.insert(0, '{}'.format(Method))        if i == 0:            write_excel(metric_save_name, 'EN', 0, filename_list)            write_excel(metric_save_name, "MI", 0, filename_list)            write_excel(metric_save_name, "SF", 0, filename_list)            write_excel(metric_save_name, "AG", 0, filename_list)            write_excel(metric_save_name, "SD", 0, filename_list)            write_excel(metric_save_name, "CC", 0, filename_list)            write_excel(metric_save_name, "SCD", 0, filename_list)            write_excel(metric_save_name, "VIF", 0, filename_list)            write_excel(metric_save_name, "MSE", 0, filename_list)            write_excel(metric_save_name, "PSNR", 0, filename_list)            write_excel(metric_save_name, "Qabf", 0, filename_list)            write_excel(metric_save_name, "Nabf", 0, filename_list)            write_excel(metric_save_name, "SSIM", 0, filename_list)            write_excel(metric_save_name, "MS_SSIM", 0, filename_list)        write_excel(metric_save_name, 'EN', i + 1, EN_list)        write_excel(metric_save_name, 'MI', i + 1, MI_list)        write_excel(metric_save_name, 'SF', i + 1, SF_list)        write_excel(metric_save_name, 'AG', i + 1, AG_list)        write_excel(metric_save_name, 'SD', i + 1, SD_list)        write_excel(metric_save_name, 'CC', i + 1, CC_list)        write_excel(metric_save_name, 'SCD', i + 1, SCD_list)        write_excel(metric_save_name, 'VIF', i + 1, VIF_list)        write_excel(metric_save_name, 'MSE', i + 1, MSE_list)        write_excel(metric_save_name, 'PSNR', i + 1, PSNR_list)        write_excel(metric_save_name, 'Qabf', i + 1, Qabf_list)        write_excel(metric_save_name, 'Nabf', i + 1, Nabf_list)        write_excel(metric_save_name, 'SSIM', i + 1, SSIM_list)        write_excel(metric_save_name, 'MS_SSIM', i + 1, MS_SSIM_list)

在上述三个程序中均需调用 Metric.py函数:

import numpy as npfrom scipy.signal import convolve2dfrom Qabf import get_Qabffrom Nabf import get_Nabfimport mathfrom ssim import ssim, ms_ssimdef EN_function(image_array):    # 计算图像的直方图    histogram, bins = np.histogram(image_array, bins=256, range=(0, 255))    # 将直方图归一化    histogram = histogram / float(np.sum(histogram))    # 计算熵    entropy = -np.sum(histogram * np.log2(histogram + 1e-7))    return entropydef SF_function(image):    image_array = np.array(image)    RF = np.diff(image_array, axis=0)    RF1 = np.sqrt(np.mean(np.mean(RF ** 2)))    CF = np.diff(image_array, axis=1)    CF1 = np.sqrt(np.mean(np.mean(CF ** 2)))    SF = np.sqrt(RF1 ** 2 + CF1 ** 2)    return SFdef SD_function(image_array):    m, n = image_array.shape    u = np.mean(image_array)    SD = np.sqrt(np.sum(np.sum((image_array - u) ** 2)) / (m * n))    return SDdef PSNR_function(A, B, F):    A = A / 255.0    B = B / 255.0    F = F / 255.0    m, n = F.shape    MSE_AF = np.sum(np.sum((F - A)**2))/(m*n)    MSE_BF = np.sum(np.sum((F - B)**2))/(m*n)    MSE = 0.5 * MSE_AF + 0.5 * MSE_BF    PSNR = 20 * np.log10(255/np.sqrt(MSE))    return PSNRdef MSE_function(A, B, F):    A = A / 255.0    B = B / 255.0    F = F / 255.0    m, n = F.shape    MSE_AF = np.sum(np.sum((F - A)**2))/(m*n)    MSE_BF = np.sum(np.sum((F - B)**2))/(m*n)    MSE = 0.5 * MSE_AF + 0.5 * MSE_BF    return MSEdef fspecial_gaussian(shape, sigma):    """    2D gaussian mask - should give the same result as MATLAB's fspecial('gaussian',...)    """    m, n = [(ss-1.)/2. for ss in shape]    y, x = np.ogrid[-m:m+1, -n:n+1]    h = np.exp(-(x*x + y*y) / (2.*sigma*sigma))    h[h < np.finfo(h.dtype).eps*h.max()] = 0    sumh = h.sum()    if sumh != 0:        h /= sumh    return hdef vifp_mscale(ref, dist):    sigma_nsq = 2    num = 0    den = 0    for scale in range(1, 5):        N = 2**(4-scale+1)+1        win = fspecial_gaussian((N, N), N/5)        if scale > 1:            ref = convolve2d(ref, win, mode='valid')            dist = convolve2d(dist, win, mode='valid')            ref = ref[::2, ::2]            dist = dist[::2, ::2]        mu1 = convolve2d(ref, win, mode='valid')        mu2 = convolve2d(dist, win, mode='valid')        mu1_sq = mu1*mu1        mu2_sq = mu2*mu2        mu1_mu2 = mu1*mu2        sigma1_sq = convolve2d(ref*ref, win, mode='valid') - mu1_sq        sigma2_sq = convolve2d(dist*dist, win, mode='valid') - mu2_sq        sigma12 = convolve2d(ref*dist, win, mode='valid') - mu1_mu2        sigma1_sq[sigma1_sq<0] = 0        sigma2_sq[sigma2_sq<0] = 0        g = sigma12 / (sigma1_sq + 1e-10)        sv_sq = sigma2_sq - g*sigma12        g[sigma1_sq<1e-10] = 0        sv_sq[sigma1_sq<1e-10] = sigma2_sq[sigma1_sq<1e-10]        sigma1_sq[sigma1_sq<1e-10] = 0        g[sigma2_sq<1e-10] = 0        sv_sq[sigma2_sq<1e-10] = 0        sv_sq[g<0] = sigma2_sq[g<0]        g[g<0] = 0        sv_sq[sv_sq<=1e-10] = 1e-10        num += np.sum(np.log10(1+g**2 * sigma1_sq/(sv_sq+sigma_nsq)))        den += np.sum(np.log10(1+sigma1_sq/sigma_nsq))    vifp = num/den    return vifpdef VIF_function(A, B, F):    VIF = vifp_mscale(A, F) + vifp_mscale(B, F)    return VIFdef CC_function(A,B,F):    rAF = np.sum((A - np.mean(A)) * (F - np.mean(F))) / np.sqrt(np.sum((A - np.mean(A)) ** 2) * np.sum((F - np.mean(F)) ** 2))    rBF = np.sum((B - np.mean(B)) * (F - np.mean(F))) / np.sqrt(np.sum((B - np.mean(B)) ** 2) * np.sum((F - np.mean(F)) ** 2))    CC = np.mean([rAF, rBF])    return CCdef corr2(a, b):    a = a - np.mean(a)    b = b - np.mean(b)    r = np.sum(a * b) / np.sqrt(np.sum(a * a) * np.sum(b * b))    return rdef SCD_function(A, B, F):    r = corr2(F - B, A) + corr2(F - A, B)    return rdef Qabf_function(A, B, F):    return get_Qabf(A, B, F)def Nabf_function(A, B, F):    return Nabf_function(A, B, F)def Hab(im1, im2, gray_level):hang, lie = im1.shapecount = hang * lieN = gray_levelh = np.zeros((N, N))for i in range(hang):for j in range(lie):h[im1[i, j], im2[i, j]] = h[im1[i, j], im2[i, j]] + 1h = h / np.sum(h)im1_marg = np.sum(h, axis=0)im2_marg = np.sum(h, axis=1)H_x = 0H_y = 0for i in range(N):if (im1_marg[i] != 0):H_x = H_x + im1_marg[i] * math.log2(im1_marg[i])for i in range(N):if (im2_marg[i] != 0):H_x = H_x + im2_marg[i] * math.log2(im2_marg[i])H_xy = 0for i in range(N):for j in range(N):if (h[i, j] != 0):H_xy = H_xy + h[i, j] * math.log2(h[i, j])MI = H_xy - H_x - H_yreturn MIdef MI_function(A, B, F, gray_level=256):MIA = Hab(A, F, gray_level)MIB = Hab(B, F, gray_level)MI_results = MIA + MIBreturn MI_resultsdef AG_function(image):width = image.shape[1]width = width - 1height = image.shape[0]height = height - 1tmp = 0.0[grady, gradx] = np.gradient(image)s = np.sqrt((np.square(gradx) + np.square(grady)) / 2)AG = np.sum(np.sum(s)) / (width * height)return AGdef SSIM_function(A, B, F):    ssim_A = ssim(A, F)    ssim_B = ssim(B, F)    SSIM = 1 * ssim_A + 1 * ssim_B    return SSIM.item()def MS_SSIM_function(A, B, F):    ssim_A = ms_ssim(A, F)    ssim_B = ms_ssim(B, F)    MS_SSIM = 1 * ssim_A + 1 * ssim_B    return MS_SSIM.item()def Nabf_function(A, B, F):    Nabf = get_Nabf(A, B, F)    return Nabf

完整demo下载地址:https://download.csdn.net/download/fovever_/87547835

指标复现不易,如果您使用了我们的程序请点赞,收藏,关注三连哦。

如果您觉得我们的程序对您的科研有用,请移步Github:https://github.com/Linfeng-Tang 引用博主的相关文献,整理不易,您的支持是我们持续开源相关程序的动力。

如有疑问可添加博主QQ:2458707789@qq.com 请备注:( 学校+姓名 ),否则不予通过好友申请。

如果你觉得博主的整理对你的学习或科研有帮助,欢迎资助一杯奶茶~