训练DETR

  • 一、数据准备
  • 二、配置DETR
  • 三、绘图
  • 四、推理
  • 五、一些小bug
  • References

一、数据准备

DETR用的是COCO格式的数据集。
如果要用DETR训练自己的数据集,直接利用Labelimg标注成COCO格式。
如果是VOC数据集的话,要做一个格式转换。网上一大堆格式转换的代码都很乱,所以自己写了一个针对VOC数据集的转换。


COCO数据集的格式类似这样,annotations文件夹里面有对应的train、val数据集的json文件。train2017则是训练集图片,其他同理。

VOC数据集的存放方式是这样的,转换格式就是找出Main文件夹下用于目标检测的图片。

Main文件夹下有train.txt文件,记录了训练集的图片。val.txt记录了验证集的图片

只需要修改注释中的两个路径即可(创建文件夹时没有加判断语句严谨一点应该加上)。

import osimport shutilimport sysimport jsonimport globimport xml.etree.ElementTree as ETSTART_BOUNDING_BOX_ID = 1# PRE_DEFINE_CATEGORIES = None# If necessary, pre-define category and its idPRE_DEFINE_CATEGORIES = {"aeroplane": 1, "bicycle": 2, "bird": 3, "boat": 4,                         "bottle": 5, "bus": 6, "car": 7, "cat": 8, "chair": 9,                         "cow": 10, "diningtable": 11, "dog": 12, "horse": 13,                         "motorbike": 14, "person": 15, "pottedplant": 16,                         "sheep": 17, "sofa": 18, "train": 19, "tvmonitor": 20}def get(root, name):    vars = root.findall(name)    return varsdef get_and_check(root, name, length):    vars = root.findall(name)    if len(vars) == 0:        raise ValueError("Can not find %s in %s." % (name, root.tag))    if length > 0 and len(vars) != length:        raise ValueError(            "The size of %s is supposed to be %d, but is %d."            % (name, length, len(vars))        )    if length == 1:        vars = vars[0]    return varsdef get_filename_as_int(filename):    try:        filename = filename.replace("\\", "/")        filename = os.path.splitext(os.path.basename(filename))[0]        return int(filename)    except:        raise ValueError(            "Filename %s is supposed to be an integer." % (filename))def get_categories(xml_files):    """Generate category name to id mapping from a list of xml files.    Arguments:        xml_files {list} -- A list of xml file paths.    Returns:        dict -- category name to id mapping.    """    classes_names = []    for xml_file in xml_files:        tree = ET.parse(xml_file)        root = tree.getroot()        for member in root.findall("object"):            classes_names.append(member[0].text)    classes_names = list(set(classes_names))    classes_names.sort()    return {name: i for i, name in enumerate(classes_names)}def convert(xml_files, json_file):    json_dict = {"images": [], "type": "instances",                 "annotations": [], "categories": []}    if PRE_DEFINE_CATEGORIES is not None:        categories = PRE_DEFINE_CATEGORIES    else:        categories = get_categories(xml_files)    bnd_id = START_BOUNDING_BOX_ID    for xml_file in xml_files:        tree = ET.parse(xml_file)        root = tree.getroot()        path = get(root, "path")        if len(path) == 1:            filename = os.path.basename(path[0].text)        elif len(path) == 0:            filename = get_and_check(root, "filename", 1).text        else:            raise ValueError("%d paths found in %s" % (len(path), xml_file))        # The filename must be a number        image_id = get_filename_as_int(filename)        size = get_and_check(root, "size", 1)        width = int(get_and_check(size, "width", 1).text)        height = int(get_and_check(size, "height", 1).text)        image = {            "file_name": filename,            "height": height,            "width": width,            "id": image_id,        }        json_dict["images"].append(image)        # Currently we do not support segmentation.        #  segmented = get_and_check(root, 'segmented', 1).text        #  assert segmented == '0'        for obj in get(root, "object"):            category = get_and_check(obj, "name", 1).text            if category not in categories:                new_id = len(categories)                categories[category] = new_id            category_id = categories[category]            bndbox = get_and_check(obj, "bndbox", 1)            xmin = int(get_and_check(bndbox, "xmin", 1).text) - 1            ymin = int(get_and_check(bndbox, "ymin", 1).text) - 1            xmax = int(get_and_check(bndbox, "xmax", 1).text)            ymax = int(get_and_check(bndbox, "ymax", 1).text)            assert xmax > xmin            assert ymax > ymin            o_width = abs(xmax - xmin)            o_height = abs(ymax - ymin)            ann = {                "area": o_width * o_height,                "iscrowd": 0,                "image_id": image_id,                "bbox": [xmin, ymin, o_width, o_height],                "category_id": category_id,                "id": bnd_id,                "ignore": 0,                "segmentation": [],            }            json_dict["annotations"].append(ann)            bnd_id = bnd_id + 1    for cate, cid in categories.items():        cat = {"supercategory": "none", "id": cid, "name": cate}        json_dict["categories"].append(cat)    os.makedirs(os.path.dirname(json_file), exist_ok=True)    json_fp = open(json_file, "w")    json_str = json.dumps(json_dict)    json_fp.write(json_str)    json_fp.close()if __name__ == "__main__":    #  只需修改以下两个路径    #  VOC数据集根目录    voc_path = "VOC2012"        #  保存coco格式数据集根目录    save_coco_path = "VOC2COCO"        #  VOC只分了训练集和验证集即train.txt和val.txt    data_type_list = ["train", "val"]    for data_type in data_type_list:        os.makedirs(os.path.join(save_coco_path, data_type+"2017"))        os.makedirs(os.path.join(save_coco_path, data_type+"_xml"))        with open(os.path.join(voc_path, "ImageSets\Main", data_type+".txt"), "r") as f:            txt_ls = f.readlines()        txt_ls = [i.strip() for i in txt_ls]        for i in os.listdir(os.path.join(voc_path, "JPEGImages")):            if os.path.splitext(i)[0] in txt_ls:                shutil.copy(os.path.join(voc_path, "JPEGImages", i),                            os.path.join(save_coco_path, data_type+"2017", i))                shutil.copy(os.path.join(voc_path, "Annotations", i[:-4]+".xml"), os.path.join(                    save_coco_path, data_type+"_xml", i[:-4]+".xml"))        xml_path = os.path.join(save_coco_path, data_type+"_xml")        xml_files = glob.glob(os.path.join(xml_path, "*.xml"))        convert(xml_files, os.path.join(save_coco_path,                "annotations", "instances_"+data_type+"2017.json"))        shutil.rmtree(xml_path)

结果如图所示,在voc2coco文件夹下有三个文件:

二、配置DETR

修改main.py文件中的参数、超参数:

这个最好不改,就设为coco。去修改models/detr.py 文件的num_classes(大概在三百多行)。这里作者也解释了num_classes其实并不是类别数,因为coco只有80类,因为coco的id是不连续的,coco数据集最大的ID是90,所以原论文时写的MAX ID +1 即91。对于我们自定义的和转化的VOC数据集num_classes就是类别数。



coco_path改成自己的coco路径。

其中预训练权重需要修改一下,coco是80类,不能直接加载官方的模型。voc是20类。把num_classes改成21。传入得到的detr_r50_21.pth新的权重文件。

import torchpretrained_weights=torch.load('detr-r50-e632da11.pth')num_classes=21pretrained_weights["model"]["class_embed.weight"].resize_(num_classes+1,256)pretrained_weights["model"]["class_embed.bias"].resize_(num_classes+1)torch.save(pretrained_weights,"detr_r50_%d.path"%num_classes)

运行日志(特别难训练):

三、绘图

在util文件夹下有plot_utils.py文件,可以绘制损失和mAP曲线。

在plot_utils.py文件中加入代码运行即可:

if __name__ == "__main__":# 路径更换为保存输出的eval路径# mAP曲线    files=list(Path("./outputs/eval").glob("*.pth"))    plot_precision_recall(files)    plt.show()    # 路径更换为保存输出的路径    # 损失曲线    plot_logs(Path("./output"))    plt.show()

四、推理

训练完毕后我们会得到一个checkpoint.pth的文件,可以用自己训练得到的模型来推理图片,代码如下:

import argparseimport numpy as npfrom models.detr import DETRfrom models.backbone import Backbone, build_backbonefrom models.transformer import build_transformerfrom PIL import Imageimport cv2import matplotlib.pyplot as pltimport torchimport torchvision.transforms as Ttorch.set_grad_enabled(False)def get_args_parser():    parser = argparse.ArgumentParser('Set transformer detector', add_help=False)    parser.add_argument('--lr', default=1e-4, type=float)    parser.add_argument('--lr_backbone', default=1e-5, type=float)    parser.add_argument('--batch_size', default=2, type=int)    parser.add_argument('--weight_decay', default=1e-4, type=float)    parser.add_argument('--epochs', default=300, type=int)    parser.add_argument('--lr_drop', default=200, type=int)    parser.add_argument('--clip_max_norm', default=0.1, type=float,                        help='gradient clipping max norm')    # Model parameters    parser.add_argument('--frozen_weights', type=str, default=None,                        help="Path to the pretrained model. If set, only the mask head will be trained")    # * Backbone    parser.add_argument('--backbone', default='resnet50', type=str,                        help="Name of the convolutional backbone to use")    parser.add_argument('--dilation', action='store_true',                        help="If true, we replace stride with dilation in the last convolutional block (DC5)")    parser.add_argument('--position_embedding', default='sine', type=str, choices=('sine', 'learned'),                        help="Type of positional embedding to use on top of the image features")    # * Transformer    parser.add_argument('--enc_layers', default=6, type=int,                        help="Number of encoding layers in the transformer")    parser.add_argument('--dec_layers', default=6, type=int,                        help="Number of decoding layers in the transformer")    parser.add_argument('--dim_feedforward', default=2048, type=int,                        help="Intermediate size of the feedforward layers in the transformer blocks")    parser.add_argument('--hidden_dim', default=256, type=int,                        help="Size of the embeddings (dimension of the transformer)")    parser.add_argument('--dropout', default=0.1, type=float,                        help="Dropout applied in the transformer")    parser.add_argument('--nheads', default=8, type=int,                        help="Number of attention heads inside the transformer's attentions")    parser.add_argument('--num_queries', default=100, type=int,                        help="Number of query slots")    parser.add_argument('--pre_norm', action='store_true')    # * Segmentation    parser.add_argument('--masks', action='store_true',                        help="Train segmentation head if the flag is provided")    # Loss    parser.add_argument('--no_aux_loss', dest='aux_loss', action='store_false',                        help="Disables auxiliary decoding losses (loss at each layer)")    # * Matcher    parser.add_argument('--set_cost_class', default=1, type=float,                        help="Class coefficient in the matching cost")    parser.add_argument('--set_cost_bbox', default=5, type=float,                        help="L1 box coefficient in the matching cost")    parser.add_argument('--set_cost_giou', default=2, type=float,                        help="giou box coefficient in the matching cost")    # * Loss coefficients    parser.add_argument('--mask_loss_coef', default=1, type=float)    parser.add_argument('--dice_loss_coef', default=1, type=float)    parser.add_argument('--bbox_loss_coef', default=5, type=float)    parser.add_argument('--giou_loss_coef', default=2, type=float)    parser.add_argument('--eos_coef', default=0.1, type=float,                        help="Relative classification weight of the no-object class")    # dataset parameters    parser.add_argument('--dataset_file', default='coco')    parser.add_argument('--coco_path', type=str, default=r"F:\DLdata\VOC2COCO")    parser.add_argument('--coco_panoptic_path', type=str)    parser.add_argument('--remove_difficult', action='store_true')    parser.add_argument('--output_dir', default='./output',                        help='path where to save, empty for no saving')    parser.add_argument('--device', default='cuda',                        help='device to use for training / testing')    parser.add_argument('--seed', default=42, type=int)    parser.add_argument('--resume', default='detr_r50_21.path', help='resume from checkpoint')    # parser.add_argument('--resume', default='detr-r50-e632da11.pth', help='resume from checkpoint')    parser.add_argument('--start_epoch', default=0, type=int, metavar='N',                        help='start epoch')    parser.add_argument('--eval', action='store_true')    parser.add_argument('--num_workers', default=0, type=int)    # distributed training parameters    parser.add_argument('--world_size', default=1, type=int,                        help='number of distributed processes')    parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')    return parserCOLORS = [[0.000, 0.447, 0.741], [0.850, 0.325, 0.098], [0.929, 0.694, 0.125], [0.494, 0.184, 0.556],          [0.466, 0.674, 0.188], [0.301, 0.745, 0.933]]transform_input = T.Compose([T.Resize(800),                             T.ToTensor(),                             T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])def box_cxcywh_to_xyxy(x):    x_c, y_c, w, h = x.unbind(1)    b = [(x_c - 0.5 * w), (y_c - 0.5 * h),         (x_c + 0.5 * w), (y_c + 0.5 * h)]    return torch.stack(b, dim=1)def rescale_bboxes(out_bbox, size):    img_w, img_h = size    b = box_cxcywh_to_xyxy(out_bbox)    b = b * torch.tensor([img_w, img_h, img_w, img_h], dtype=torch.float32, device="cuda")    return bdef plot_results(pil_img, prob, boxes, img_save_path):    plt.figure(figsize=(16, 10))    plt.imshow(pil_img)    ax = plt.gca()    colors = COLORS * 100    for p, (xmin, ymin, xmax, ymax), c in zip(prob, boxes.tolist(), colors):        ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin,                                   fill=False, color=c, linewidth=3))        cl = p.argmax()        text = f'{CLASSES[cl]}:      {p[cl]:0.2f}'        ax.text(xmin, ymin, text, fontsize=9,                bbox=dict(facecolor='yellow', alpha=0.5))    plt.savefig(img_save_path)    plt.axis('off')    plt.show()def main(num_classes, chenkpoint_path, img_path, img_save_path, num_queries=100):    parser = argparse.ArgumentParser('DETR training and evaluation script', parents=[get_args_parser()])    args = parser.parse_args()    backbone = build_backbone(args)    transform = build_transformer(args)    model = DETR(backbone=backbone, transformer=transform, num_classes=num_classes, num_queries=100)    device = "cuda" if torch.cuda.is_available() else "cpu"    model.to(device)    model_path = chenkpoint_path    model_data = torch.load(model_path)['model']    model.load_state_dict(model_data)    model.eval()    path = img_path    im = cv2.imread(path)    im = Image.fromarray(cv2.cvtColor(im, cv2.COLOR_BGR2RGB))    img = transform_input(im).unsqueeze(0)    outputs = model(img.to(device))    probs = outputs['pred_logits'].softmax(-1)[0, :, :-1]    # 可修改阈值,只输出概率大于0.7的物体    keep = probs.max(-1).values > 0.7    # print(probs[keep])    bboxes_scaled = rescale_bboxes(outputs['pred_boxes'][0, keep], im.size)    ori_img = np.array(im)    plot_results(ori_img, probs[keep], bboxes_scaled, img_save_path)if __name__ == "__main__":    CLASSES = ['N/A', "aeroplane", "bicycle", "bird", "boat",               "bottle", "bus", "car", "cat", "chair",               "cow", "diningtable", "dog", "horse",               "motorbike", "person", "pottedplant",               "sheep", "sofa", "train", "tvmonitor"]    main(num_classes=21, chenkpoint_path="checkpoint.pth", img_path="test.png",         img_save_path="result2.png")

几点说明:
1.CLASSES是我们数据集对应的类别名,注意自己标注的顺序一定写对。第一个类别是背景类,这个是固定的,所有数据集都要有。
2.
num_classes:类别数+1
chenkpoint_path:保存的权重文件
img_path:测试的图片路径
img_save_path:保存结果路径

3.可修改阈值,论文中默认只输出概率大于0.7的物体。


用VOC数据集训练的模型推理效果:
(VOC数据集中没有自行车一类所以识别不出来)

五、一些小bug

UserWarning: floordiv is deprecated, and its behavior will change in a future version of pytorch. It currently rounds toward 0 (like the ‘trunc’ function NOT ‘floor’). This results in incorrect rounding for negative values. To keep the current behavior, use torch.div(a, b, rounding_mode=‘trunc’), or for actual floor division, use torch.div(a, b, rounding_mode=‘floor’).
这时一个torch版本原因导致的一个函数问题,报了一个警告。
将models/position_encoding.py文件中的第44行改成如下形式即可。

References

VOC2COCO代码参考Github
DETR预训练模型