文章目录

        • 一、模型转换 onnx2trt
        • 二、配置环境变量
        • 三、调用推理
          • python示例代码
          • C++ 代码示例

测试使用:【Win10+cuda11.0+cudnn8.2.1+TensorRT8.2.5.1】关于安装

一、模型转换 onnx2trt

方法1:使用wang-xinyu/tensorrtx部署yolov5方法:https://wangsp.blog.csdn.net/article/details/121718501
方法2:使用tensorRT转成engine
方法3:使用C++ onnx_tensorrt将onnx转为trt 的推理engine 参考 【python 方法参考】
方法4:直接使用TensorRT部署onnx【参考】

  1. 使用TensorRT部署pytorch模型(c++推理)【参考】
  2. TensorRT-pytorch权重文件转engine【参考】
  3. pth->onnx->下载好TensorRT库, 进入~/samples/trtexec, 运行make,生成.engine->python run engine 【参考】 【参考2】

使用 trtexec工具转engine
使用 ./trtexec --help 查看命令:

#生成静态batchsize的engine./trtexec --onnx=<onnx_file> \ #指定onnx模型文件        --explicitBatch \ #在构建引擎时使用显式批大小(默认=隐式)显示批处理        --saveEngine=<tensorRT_engine_file> \ #输出engine        --workspace=<size_in_megabytes> \ #设置工作空间大小单位是MB(默认为16MB)        --fp16 #除了fp32之外,还启用fp16精度(默认=禁用)        #生成动态batchsize的engine./trtexec --onnx=<onnx_file> \#指定onnx模型文件        --minShapes=input:<shape_of_min_batch> \ #最小的NCHW        --optShapes=input:<shape_of_opt_batch> \  #最佳输入维度,跟maxShapes一样就好        --maxShapes=input:<shape_of_max_batch> \ #最大输入维度        --workspace=<size_in_megabytes> \ #设置工作空间大小单位是MB(默认为16MB)        --saveEngine=<engine_file> \   #输出engine        --fp16   #除了fp32之外,还启用fp16精度(默认=禁用)#小尺寸的图片可以多batchsize即8x3x416x416/home/zxl/TensorRT-7.2.3.4/bin/trtexec  --onnx=yolov4_-1_3_416_416_dynamic.onnx \                                        --minShapes=input:1x3x416x416 \                                        --optShapes=input:8x3x416x416 \                                        --maxShapes=input:8x3x416x416 \                                        --workspace=4096 \                                        --saveEngine=yolov4_-1_3_416_416_dynamic_b8_fp16.engine \                                        --fp16#由于内存不够了所以改成4x3x608x608/home/zxl/TensorRT-7.2.3.4/bin/trtexec  --onnx=yolov4_-1_3_608_608_dynamic.onnx \                                        --minShapes=input:1x3x608x608 \                                        --optShapes=input:4x3x608x608 \                                        --maxShapes=input:4x3x608x608 \                                        --workspace=4096 \                                        --saveEngine=yolov4_-1_3_608_608_dynamic_b4_fp16.engine \                                        --fp16                                                   

测试,执行:

二、配置环境变量

################ TenorRT 包含目录 ######################C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.0\include;D:\opencv_build\install\include;D:\opencv_build\install\include\opencv2;D:\Downloads\cuda_cudnn_TensorRT8\TensorRT-8.2.5.1.Windows10.x86_64.cuda-11.4.cudnn8.2\TensorRT-8.2.5.1\samples\common####################  TenorRT 库目录 ############################D:\opencv_build\install\x64\vc16\lib\*.libC:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.0\lib\x64\*.lib

三、调用推理

使用pycuda【下载】地址。模型训练代码来自 https://github.com/bubbliiiing
安装pycuda 对应python的版本:pycuda-2020.1+cuda101-cp38-cp38-win_amd64.whl
安装tensorrt对应python的版本:tensorrt-8.2.5.1-cp38-none-win_amd64.whl(来自TensorRT-8.2.5.1.Windows10.x86_64.cuda-11.4.cudnn8.2\TensorRT-8.2.5.1\python目录下)

TensorRT调用步骤

  1. 创建IBuilder的指针builder
  2. 设置推理的显存大小
  3. 设置推理的模式,float或者int
  4. 利用builder创建ICudaEngine的实例engine
  5. 由engine创建上下文context
  6. 利用context进行推理,得到结果
  7. 释放显存空间
python示例代码
# --*-- coding:utf-8 --*--import pycuda.autoinitimport pycuda.driver as cudaimport tensorrt as trtimport torchimport timefrom PIL import Imageimport cv2, osimport torchvisionimport numpy as npfilename = '/home/img.png'max_batch_size = 1onnx_model_path = "./resnet18.onnx"TRT_LOGGER = trt.Logger(trt.Logger.WARNING)def get_img_np_nchw(filename):    image = cv2.imread(filename)    image_cv = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)    image_cv = cv2.resize(image_cv, (224, 224))    miu = np.array([0.485, 0.456, 0.406]).reshape(3, 1, 1)    std = np.array([0.229, 0.224, 0.225]).reshape(3, 1, 1)    img_np = np.array(image_cv, dtype=np.float) / 255.    img_np = img_np.transpose((2, 0, 1))    img_np -= miu    img_np /= std    img_np_nchw = img_np[np.newaxis]    img_np_nchw = np.tile(img_np_nchw, (max_batch_size, 1, 1, 1))    return img_np_nchwclass HostDeviceMem(object):    def __init__(self, host_mem, device_mem):        """        host_mem: cpu memory        device_mem: gpu memory        """        self.host = host_mem        self.device = device_mem    def __str__(self):        return "Host:\n" + str(self.host) + "\nDevice:\n" + str(self.device)    def __repr__(self):        return self.__str__()def allocate_buffers(engine):    inputs, outputs, bindings = [], [], []    stream = cuda.Stream()    for binding in engine:        # print(binding) # 绑定的输入输出        # print(engine.get_binding_shape(binding)) # get_binding_shape 是变量的大小        size = trt.volume(engine.get_binding_shape(binding)) * engine.max_batch_size        # volume 计算可迭代变量的空间,指元素个数        # size = trt.volume(engine.get_binding_shape(binding)) # 如果采用固定bs的onnx,则采用该句        dtype = trt.nptype(engine.get_binding_dtype(binding))        # get_binding_dtype  获得binding的数据类型        # nptype等价于numpy中的dtype,即数据类型        # allocate host and device buffers        host_mem = cuda.pagelocked_empty(size, dtype)  # 创建锁业内存        device_mem = cuda.mem_alloc(host_mem.nbytes)  # cuda分配空间        # print(int(device_mem)) # binding在计算图中的缓冲地址        bindings.append(int(device_mem))        # append to the appropriate list        if engine.binding_is_input(binding):            inputs.append(HostDeviceMem(host_mem, device_mem))        else:            outputs.append(HostDeviceMem(host_mem, device_mem))    return inputs, outputs, bindings, streamdef get_engine(max_batch_size=1, onnx_file_path="", engine_file_path="", fp16_mode=False, save_engine=False):    """    params max_batch_size:      预先指定大小好分配显存    params onnx_file_path:      onnx文件路径    params engine_file_path:    待保存的序列化的引擎文件路径    params fp16_mode:           是否采用FP16    params save_engine:         是否保存引擎    returns:                    ICudaEngine    """    # 如果已经存在序列化之后的引擎,则直接反序列化得到cudaEngine    if os.path.exists(engine_file_path):        print("Reading engine from file: {}".format(engine_file_path))        with open(engine_file_path, 'rb') as f, \                trt.Runtime(TRT_LOGGER) as runtime:            return runtime.deserialize_cuda_engine(f.read())  # 反序列化    else:  # 由onnx创建cudaEngine        # 使用logger创建一个builder        # builder创建一个计算图 INetworkDefinition        explicit_batch = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)        # In TensorRT 7.0, the ONNX parser only supports full-dimensions mode, meaning that your network definition must be created with the explicitBatch flag set. For more information, see Working With Dynamic Shapes.        with trt.Builder(TRT_LOGGER) as builder, \                builder.create_network(explicit_batch) as network, \                trt.OnnxParser(network, TRT_LOGGER) as parser:  # 使用onnx的解析器绑定计算图,后续将通过解析填充计算图            builder.max_workspace_size = 1 << 30  # 预先分配的工作空间大小,即ICudaEngine执行时GPU最大需要的空间            builder.max_batch_size = max_batch_size  # 执行时最大可以使用的batchsize            builder.fp16_mode = fp16_mode            # 解析onnx文件,填充计算图            if not os.path.exists(onnx_file_path):                quit("ONNX file {} not found!".format(onnx_file_path))            print('loading onnx file from path {} ...'.format(onnx_file_path))            with open(onnx_file_path, 'rb') as model:  # 二值化的网络结果和参数                print("Begining onnx file parsing")                parser.parse(model.read())  # 解析onnx文件            # parser.parse_from_file(onnx_file_path) # parser还有一个从文件解析onnx的方法            print("Completed parsing of onnx file")            # 填充计算图完成后,则使用builder从计算图中创建CudaEngine            print("Building an engine from file{}' this may take a while...".format(onnx_file_path))            #################            print(network.get_layer(network.num_layers - 1).get_output(0).shape)            # network.mark_output(network.get_layer(network.num_layers -1).get_output(0))            engine = builder.build_cuda_engine(network)  # 注意,这里的network是INetworkDefinition类型,即填充后的计算图            print("Completed creating Engine")            if save_engine:  # 保存engine供以后直接反序列化使用                with open(engine_file_path, 'wb') as f:                    f.write(engine.serialize())  # 序列化            return enginedef do_inference(context, bindings, inputs, outputs, stream, batch_size=1):    # Transfer data from CPU to the GPU.    [cuda.memcpy_htod_async(inp.device, inp.host, stream) for inp in inputs]    # htod: host to device 将数据由cpu复制到gpu device    # Run inference.    context.execute_async_v2(bindings=bindings, stream_handle=stream.handle)    # 当创建network时显式指定了batchsize, 则使用execute_async_v2, 否则使用execute_async    # Transfer predictions back from the GPU.    [cuda.memcpy_dtoh_async(out.host, out.device, stream) for out in outputs]    # gpu to cpu    # Synchronize the stream    stream.synchronize()    # Return only the host outputs.    return [out.host for out in outputs]def postprocess_the_outputs(h_outputs, shape_of_output):    h_outputs = h_outputs.reshape(*shape_of_output)    return h_outputsimg_np_nchw = get_img_np_nchw(filename).astype(np.float32)# These two modes are depend on hardwaresfp16_mode = Falsetrt_engine_path = "./model_fp16_{}.trt".format(fp16_mode)# Build an cudaEngineengine = get_engine(max_batch_size, onnx_model_path, trt_engine_path, fp16_mode)# 创建CudaEngine之后,需要将该引擎应用到不同的卡上配置执行环境context = engine.create_execution_context()inputs, outputs, bindings, stream = allocate_buffers(engine)  # input, output: host # bindings# Do inferenceshape_of_output = (max_batch_size, 1000)# Load data to the bufferinputs[0].host = img_np_nchw.reshape(-1)# inputs[1].host = ... for multiple inputt1 = time.time()trt_outputs = do_inference(context, bindings=bindings, inputs=inputs, outputs=outputs, stream=stream)  # numpy datat2 = time.time()feat = postprocess_the_outputs(trt_outputs[0], shape_of_output)print('TensorRT ok')model = torchvision.models.resnet18(pretrained=True).cuda()resnet_model = model.eval()input_for_torch = torch.from_numpy(img_np_nchw).cuda()t3 = time.time()feat_2 = resnet_model(input_for_torch)t4 = time.time()feat_2 = feat_2.cpu().data.numpy()print('Pytorch ok!')mse = np.mean((feat - feat_2) ** 2)print("Inference time with the TensorRT engine: {}".format(t2 - t1))print("Inference time with the PyTorch model: {}".format(t4 - t3))print('MSE Error = {}'.format(mse))print('All completed!')
C++ 代码示例

TensorRT 傻瓜式部署流程:参考

#include #include #include #include #include #include #include #include #include #include #include #include #include #include "NvInfer.h"#include "NvOnnxParser.h"#include "argsParser.h"#include "logger.h"#include "common.h"#ifndef NOMINMAX#ifndef max_idx#define max_idx(a,b)            (((a) > (b)) " /> << #x << "=" << x << std::endlusing namespace nvinfer1;samplesCommon::Args gArgs;using namespace sample;static const int INPUT_H = 480;static const int INPUT_W = 480;static const int INPUT_C = 3;static constexpr int  INPUT_SIZE = INPUT_H * INPUT_W * 3;static constexpr int OUTPUT_SIZE = INPUT_H * INPUT_W * 2;static const cv::Size newShape = cv::Size(INPUT_W, INPUT_H);const std::string trtModelName = "D:\\xxx.engine";const std::string onnxModeName = "D:\\xxx.onnx";const std::string file_name = "D:\\xxx.jpg";struct TensorRT {IExecutionContext* context;ICudaEngine* engine;IRuntime* runtime;};void image_to_center(const cv::Mat& image, cv::Mat& outImage, cv::Mat& IM, const cv::Scalar& color){cv::Size shape = image.size();float scale_xy = std::min((float)newShape.height / (float)shape.height,(float)newShape.width / (float)shape.width);cv::Mat M = (cv::Mat_<float>(2, 3) <<scale_xy, 0, -scale_xy * (float)shape.width * 0.5 + (float)newShape.width * 0.5,0, scale_xy, -scale_xy * (float)shape.height * 0.5 + (float)newShape.height * 0.5);cv::invertAffineTransform(M, IM);cv::warpAffine(image, outImage, M, newShape, 1, 0, color);}void center_to_image(const cv::Mat& image, cv::Mat& outImage, cv::Mat& IM){cv::warpAffine(image, outImage, IM, newShape);}void normal_image2blob(float* blob, cv::Mat& img) {for (int c = 0; c < 3; ++c) {for (int i = 0; i < img.rows; ++i) {cv::Vec3b* p1 = img.ptr<cv::Vec3b>(i);for (int j = 0; j < img.cols; ++j) {blob[c * img.cols * img.rows + i * img.cols + j] = p1[j][c] * 0.00392156862745098;}}}}bool onnxToTRTModel(const std::string& modelFile, // name of the onnx modelunsigned int maxBatchSize,                    // batch size - NB must be at least as large as the batch we want to run withIHostMemory*& trtModelStream)                 // output buffer for the TensorRT model{// create the builderIBuilder* builder = createInferBuilder(gLogger.getTRTLogger());assert(builder != nullptr);nvinfer1::INetworkDefinition* network = builder->createNetworkV2(maxBatchSize);nvinfer1::IBuilderConfig* config = builder->createBuilderConfig();config->setMaxWorkspaceSize(1 << 20);// parserauto parser = nvonnxparser::createParser(*network, gLogger.getTRTLogger());if (!parser->parseFromFile(modelFile.c_str(), static_cast<int>(gLogger.getReportableSeverity()))){gLogError << "Failure while parsing ONNX file" << std::endl;return false;}if (builder->platformHasFastFp16()) {config->setFlag(nvinfer1::BuilderFlag::kFP16);}else {std::cout << "This platform does not support fp16" << std::endl;}// Build the engineICudaEngine* engine = builder->buildEngineWithConfig(*network, *config);assert(engine);// serialize the engine, then close everything downtrtModelStream = engine->serialize();parser->destroy();engine->destroy();network->destroy();builder->destroy();std::ofstream ofs(trtModelName.c_str(), std::ios::out | std::ios::binary);ofs.write((char*)(trtModelStream->data()), trtModelStream->size());ofs.close();DebugP("Trt model save success!");return true;}TensorRT* LoadNet(const char* trtFileName){std::ifstream t(trtFileName, std::ios::in | std::ios::binary);std::stringstream tempStream;tempStream << t.rdbuf();t.close();DebugP("TRT File Loaded successfully!");tempStream.seekg(0, std::ios::end);const int modelSize = tempStream.tellg();tempStream.seekg(0, std::ios::beg);void* modelMem = malloc(modelSize);tempStream.read((char*)modelMem, modelSize);IRuntime* runtime = createInferRuntime(gLogger);if (runtime == nullptr){DebugP("Build Runtime Failure");return 0;}if (gArgs.useDLACore >= 0){runtime->setDLACore(gArgs.useDLACore);}ICudaEngine* engine = runtime->deserializeCudaEngine(modelMem, modelSize, nullptr);if (engine == nullptr){DebugP("Build Engine Failure");return 0;}IExecutionContext* context = engine->createExecutionContext();if (context == nullptr){DebugP("Build Context Failure");return 0;}TensorRT* trt = new TensorRT();trt->context = context;trt->engine = engine;trt->runtime = runtime;DebugP("Build trt Model Success!");return trt;}void doInference(IExecutionContext& context, float* input, float* output, int batchSize){const ICudaEngine& engine = context.getEngine();assert(engine.getNbBindings() == 2);void* buffers[2];int inputIndex, outputIndex;for (int b = 0; b < engine.getNbBindings(); ++b){if (engine.bindingIsInput(b))inputIndex = b;elseoutputIndex = b;}std::cout << "inputIndex=" << inputIndex << "\n";std::cout << "outputIndex=" << outputIndex << "\n";// create GPU buffers and a streamCHECK(cudaMalloc(&buffers[inputIndex], batchSize * INPUT_C * INPUT_H * INPUT_W * sizeof(float)));CHECK(cudaMalloc(&buffers[outputIndex], batchSize * OUTPUT_SIZE * sizeof(float)));cudaStream_t stream;CHECK(cudaStreamCreate(&stream));// DMA the input to the GPU,  execute the batch asynchronously, and DMA it back:CHECK(cudaMemcpyAsync(buffers[inputIndex], input, batchSize * INPUT_C * INPUT_H * INPUT_W * sizeof(float), cudaMemcpyHostToDevice, stream));context.enqueue(batchSize, buffers, stream, nullptr);CHECK(cudaMemcpyAsync(output, buffers[outputIndex], batchSize * OUTPUT_SIZE * sizeof(float), cudaMemcpyDeviceToHost, stream));cudaStreamSynchronize(stream);// release the stream and the bufferscudaStreamDestroy(stream);CHECK(cudaFree(buffers[inputIndex]));CHECK(cudaFree(buffers[outputIndex]));}void PostProcessing(float* out, cv::Mat& image_clone, cv::Mat& IM, cv::Size& rawShape){uchar colors[2][3] = { {0,0,0},{128,0,0} };constexpr int single_len = INPUT_W * INPUT_H;cv::Mat mask_mat = cv::Mat::zeros(INPUT_W, INPUT_H, CV_8UC3);float src[2] = { 0 };uchar color_idx = 0;for (size_t i = 0; i < INPUT_H; i++) {uchar* mask_ptr = mask_mat.ptr<uchar>(i);for (size_t j = 0; j < INPUT_W; j++) {color_idx = max_idx(out[i * INPUT_W + j], out[single_len + i * INPUT_W + j]);*mask_ptr++ = colors[color_idx][2];*mask_ptr++ = colors[color_idx][1];*mask_ptr++ = colors[color_idx][0];}}//cv::imwrite("../mask_mat.png", mask_mat);//cv::warpAffine(mask_mat, mask_mat, IM, rawShape);//cv::addWeighted(image_clone, 0.6, mask_mat, 0.4, 0, image_clone);//cv::imwrite("../image_clone.png", image_clone);}int main(int argc, char** argv){IHostMemory* trtModelStream{ nullptr };TensorRT* ptensor_rt;IExecutionContext* context = nullptr;IRuntime* runtime = nullptr;ICudaEngine* engine = nullptr;if (_access(trtModelName.c_str(), 0) != 1){ptensor_rt = LoadNet(trtModelName.c_str());context = ptensor_rt->context;runtime = ptensor_rt->runtime;engine = ptensor_rt->engine;}else{if (!onnxToTRTModel(onnxModeName, 1, trtModelStream))return 1;assert(trtModelStream != nullptr);std::cout << "Successfully parsed ONNX file!!!!" << std::endl;// deserialize the engineruntime = createInferRuntime(gLogger);assert(runtime != nullptr);if (gArgs.useDLACore >= 0){runtime->setDLACore(gArgs.useDLACore);}engine = runtime->deserializeCudaEngine(trtModelStream->data(), trtModelStream->size(), nullptr);assert(engine != nullptr);trtModelStream->destroy();context = engine->createExecutionContext();assert(context != nullptr);}// 输入预处理std::cout << "Start reading the input image!!!!" << std::endl;cv::Mat image = cv::imread(file_name, cv::IMREAD_COLOR);cv::cvtColor(image, image, cv::COLOR_BGR2RGB);cv::Mat image_clone = image.clone();cv::Size rawShape = image.size();// 图像转成blobcv::Mat outImage, IM;image_to_center(image, outImage, IM, cv::Scalar(128, 128, 128));float* blob = new float[INPUT_SIZE] { 0 };normal_image2blob(blob, outImage);float* out = new float[OUTPUT_SIZE] { 0 };// 推理计时typedef std::chrono::high_resolution_clock Time;typedef std::chrono::duration<double, std::ratio<1, 1000>> ms;typedef std::chrono::duration<float> fsec;double total = 0.0;auto t0 = Time::now();doInference(*context, blob, out, 1);auto t1 = Time::now();fsec fs = t1 - t0;ms d = std::chrono::duration_cast<ms>(fs);total += d.count();// 网络输出的后处理PostProcessing(out, image_clone,IM, rawShape);// 释放缓存context->destroy();engine->destroy();runtime->destroy();if (blob){delete[] blob;}if (out){delete[] out;}std::cout << std::endl << "Running time of one image is:" << total << "ms" << std::endl;return 0;}

编译添加预处理:_CRT_SECURE_NO_WARNINGS