注意:本篇文章是基于清华大学出版社,陈强教授编写的《Python项目实战开发》一书来行文的,具体有写的不清楚的地方,建议参考陈强教授写的具体内容,若写的有错误的地方,欢迎大家及时指出,更改。同时,本文适用于有一定Python基础的同学阅读学习,能够理解一定的算法思想。
对于pygame模块不是很清楚的可以参考文章点击这里
目录
1.系统架构分析
1.1五子棋的基本棋型
1.2功能模块
2.具体实现
2.1设置基础参数
2.2绘制棋盘
2.3编写函数intoNextTurn()
2.4编写函数getLocate()
2.5编写函数getIdex()
2.6编写函数isInside()
2.7编写函数isEmpty()
2.8编写函数printChessPiece()
2.9实现AI功能
2.9.1方法分析
2.9.2功能实现
2.10实现按钮功能
2.11实现重写功能(即游戏的调用函数)
3.完整代码及运行结果图
4.软件封装
4.1pyinstaller的简介
4.2pyinstaller的安装
4.3准备
4.4程序打包
1.系统架构分析
1.1五子棋的基本棋型
对五子棋游戏来说,有常见的七种基本棋型:连五,活四,冲四,活三,眠三,活二,眠二。
①连五:顾名思义,五颗同色棋子连在一起。
②活四:有两个连五点(即有两个点可以形成五)。
③冲四:有一个连五点,均为冲四棋型。
④活三:可以形成活四的三,代表两种最基本的活三棋型。活三棋型是进攻中最常见的一种,因为活三之后,如果对方不以理会,将可以下一手将活三变成活四,而活四是已经无法单纯防守住了。所以,当面对活三的时候,需要非常谨慎对待。在自己没有更好的进攻手段的情况下,需要对其进行防守,以防止其形成可怕的活四棋型。
⑤眠三:只能够形成冲四的三。眠三的棋型与活三的棋型相比,危险系数下降不少,因为眠三棋型即使不去防守,下一手它也只能形成冲四,而对于单纯的冲四棋型,是可以防守住的。
⑥活二:能够形成活三的二,是三种基本的活二棋型。活二棋型看起来似乎很无害,因为下一手棋才能形成活三,等形成活三,再防守也不迟。但其实活二棋型是非常重要的,尤其是在开局阶段,形成较多的活二棋型的话,将活二变成活三时,才能够令自己的活三绵绵不绝微风里,让对手防不胜防。
⑦眠二:能够形成眠三的二。
1.2功能模块
根据五子棋的游戏规则和基本棋型分析项目架构,最终得出的功能模块如下图:
2.具体实现
2.1设置基础参数
在实例文件中,会多次用到这些基础参数,例如:设置棋盘单元格的大小,棋盘的大小,按钮的位置和大小信息等,故将这些基础参数写在代码前面,如下:
# 基础参数设置square_size = 40 # 单格的宽度(不是格数!是为了方便绘制棋盘用的变量chess_size = square_size // 2 - 2 # 棋子大小web_broad = 15 # 棋盘格数+1(nxn)map_w = web_broad * square_size # 棋盘长度map_h = web_broad * square_size # 棋盘高度info_w = 60 # 按钮界面宽度button_w = 120 # 按钮长宽button_h = 45screen_w = map_w # 总窗口长宽screen_h = map_h + info_w
2.2绘制棋盘
在实例文件中,使用如下MAP_ENUM和Map两个类,来绘制棋盘的界面。
在MAP_ENUM类中使用的数字表示当前格子的使用情况,
class MAP_ENUM(IntEnum): # 用数字表示当前格的情况 be_empty = 0, # 无人下 player1 = 1, # 玩家一,执白 player2 = 2, # 玩家二,执黑 out_of_range = 3, # 出界
在Map类中,使用self.map初始化二维数组来表示棋盘的大小,该数组中的值与类MAP_ENUM中的值对应,0表示空,该处没人下棋,1表示玩家一下的棋(在实例中为白棋),2表示玩家二下的棋,3表示超出允许下棋的界面,用self.steps来按顺序保存一下的棋子。
class Map: # 地图类 def __init__(self, width, height): # 构造函数 self.width = width self.height = height self.map = [[0 for x in range(self.width)] for y in range(self.height)] # 存储棋盘的二维数组 self.steps = [] # 记录步骤先后 def get_init(self): # 重置棋盘 for y in range(self.height): for x in range(self.width): self.map[y][x] = 0 self.steps = []
2.3编写函数intoNextTurn()
编写intoNextTurn()函数,意思是进入下一回合的比赛,交换下棋人。
def intoNextTurn(self, turn): # 进入下一回合,交换下棋人 if turn == MAP_ENUM.player1: return MAP_ENUM.player2 else: return MAP_ENUM.player1
2.4编写函数getLocate()
编写getLocate()函数,功能是根据出入的下标返回棋子的具体位置。
def getLocate(self, x, y): # 输入下标,返回具体位置 map_x = x * square_size map_y = y * square_size return (map_x, map_y, square_size, square_size) # 返回位置信息
2.5编写函数getIdex()
编写getIdex()函数,功能是根据输入的具体位置,返回棋子的下标。
def getIndex(self, map_x, map_y): # 输入具体位置,返回下标 x = map_x // square_size y = map_y // square_size return (x, y)
2.6编写函数isInside()
编写isInside()函数,功能是判断当前位置是否在棋盘的有效位置,即没有出界。
def isInside(self, map_x, map_y): # 是否在有效范围内 if (map_x = map_w or map_y = map_h): return False return True
2.7编写函数isEmpty()
编写isEmpty()函数,功能是判断当前的格子是否已经存在棋子。
def isEmpty(self, x, y): # 当前格子是否已经有棋子 return (self.map[y][x] == 0)
2.8编写函数printChessPiece()
编写printChessPiece()函数,功能是在棋盘中绘制已经下的棋子,并且会按照下棋的顺序加上序号,在绘制时会区分黑棋和白棋。
def printChessPiece(self, screen): # 绘制棋子 player_one = (255, 245, 238) # 象牙白 player_two = (41, 36, 33) # 烟灰 player_color = [player_one, player_two] for i in range(len(self.steps)): x, y = self.steps[i] map_x, map_y, width, height = self.getLocate(x, y) pos, radius = (map_x + width // 2, map_y + height // 2), chess_size turn = self.map[y][x] pygame.draw.circle(screen, player_color[turn - 1], pos, radius) # 画棋子 def drawBoard(self, screen): # 画棋盘 color = (0, 0, 0) # 线色 for y in range(self.height): # 画横着的棋盘线 start_pos, end_pos = (square_size // 2, square_size // 2 + square_size * y), ( map_w - square_size // 2, square_size // 2 + square_size * y) pygame.draw.line(screen, color, start_pos, end_pos, 1) for x in range(self.width): # 画竖着的棋盘线 start_pos, end_pos = (square_size // 2 + square_size * x, square_size // 2), ( square_size // 2 + square_size * x, map_h - square_size // 2) pygame.draw.line(screen, color, start_pos, end_pos, 1)
2.9实现AI功能
2.9.1方法分析
在文章的一开始,已经说明了,五子棋游戏有七种基本棋型,那么究竟如何记录棋盘上个的棋型个数呢?我们可以创建黑棋和白棋两个数组,记录棋盘上的黑棋和白棋分别形成的所有棋型的个数,然后按照一定的评分规则进行评分。本文的记录棋型的方法就是对整个棋盘进行遍历,对于每一个白棋或者黑棋,以它为中心,记录符合棋型的个数。具体诗仙女如下:
1)遍历棋盘上的每个点,对这个点所在的四个方向(水平,竖直,\,/)形成的四条线进行评估。
2)对于一条具体的线,以它为中心,取这条线为方向上的前后各四个点,组成一个长度为9的数组。
3)找出这个长度为9的数组里面和中心点相同颜色的棋子有多少,在进行下一次评估的时候要将在数组内的同色棋子排除,避免重复统计棋型。
4)根据棋盘上的黑棋和白棋的棋型信息,按照一定的评分规则进行评分。值得注意一点的是,在评分的时候要标记最后一步棋是什么颜色的,因为,假设,最后一步是黑棋下的(评分规则是黑棋得分-白棋得分),那么在相同棋型和相同个数的情况下,即评分相同,白棋会占优,因为下一步是白棋下。本实例按照下面的评分规则进行依次匹配:
黑棋连五,评分为10000,
白棋连五,评分为-10000,
黑棋有两个冲四,可以当成一个活四,
白棋有活四,评分为-9050,
白棋有冲四,评分为-9040,
黑棋有活四,评分为9030,
黑棋有冲四和活三,评分为9020,
黑棋没有冲四,且白棋有活三,评分为9010,
黑棋有2个活三,且白棋没有活三或眠三,评分为9000,
最后针对黑棋或者白棋的活三,眠三,活二,眠二的个数进行依次增加分数,具体评分值为(黑棋得分-白棋得分)。
2.9.2功能实现
有了上面的评分标准后,当轮到AI下棋的时候,只要针对当前的棋型,找到一个最有利的位置进行下棋即可。下面进行编写评估函数,来获取最有利的位置:
先遍历整个棋盘的每一个空点,并在这个空点上下棋,获取新的棋局评分,
如果是比之前更高的得分,则保存该位置,
然后将这个位置恢复为空点,
最后获取最高得分的位置。
在实例文件中,通过类MyChessAI实现AI的功能,实现流程如下:
1)使用构造函数试下初始化的功能,在数组record中记录所有位置的4个方向是否被检测过,使用二维数组count记录白棋和黑棋的棋型个数统计。通过position_isgreat方法给棋盘上的每个位置设置一个初始分数,越靠近棋盘中心,分数越高,这样在最初没有任何棋型的时候,AI会优先选择靠近中心的位置。
class MyChessAI(): def __init__(self, chess_len): # 构造函数 self.len = chess_len # 当前棋盘大小 # 二维数组,每一格存的是:横评分,纵评分,左斜评分,右斜评分 self.record = [[[0, 0, 0, 0] for i in range(chess_len)] for j in range(chess_len)] # 存储当前格具体棋型数量 self.count = [[0 for i in range(SITUATION_NUM)] for j in range(2)] # 位置分(同条件下越靠近棋盘中央越高) self.position_isgreat = [ [(web_broad - max(abs(i - web_broad / 2 + 1), abs(j - web_broad / 2 + 1))) for i in range(chess_len)] for j in range(chess_len)] def get_init(self): # 初始化 for i in range(self.len): for j in range(self.len): for k in range(4): self.record[i][j][k] = 0 for i in range(len(self.count)): for j in range(len(self.count[0])): self.count[i][j] = 0 self.save_count = 0 def isWin(self, board, turn): # 当前人胜利 return self.evaluate(board, turn, True)
2)编写函数genmove(),功能是返回所有没有下棋的坐标(位置从好到坏)。
def genmove(self, board, turn): moves = [] for y in range(self.len): for x in range(self.len): if board[y][x] == 0: score = self.position_isgreat[y][x] moves.append((score, x, y)) moves.sort(reverse=True) return moves
3)编写search()函数,功能是返回当前最优解的下标。先通过函数genmove()获取棋盘上所有的点,然后一次尝试,获得评分最高的位置,并且返回。
def search(self, board, turn): moves = self.genmove(board, turn) bestmove = None max_score = -99999 # 无穷小 for score, x, y in moves: board[y][x] = turn.value score = self.evaluate(board, turn) board[y][x] = 0 if score > max_score: max_score = score bestmove = (max_score, x, y) return bestmove
4)编写函数getScore(),功能是对黑棋和白棋进行评分。
def getScore(self, mychess, yourchess): mscore, oscore = 0, 0 if mychess[FIVE] > 0: return (10000, 0) if yourchess[FIVE] > 0: return (0, 10000) if mychess[S4] >= 2: mychess[L4] += 1 if yourchess[L4] > 0: return (0, 9050) if yourchess[S4] > 0: return (0, 9040) if mychess[L4] > 0: return (9030, 0) if mychess[S4] > 0 and mychess[L3] > 0: return (9020, 0) if yourchess[L3] > 0 and mychess[S4] == 0: return (0, 9010) if (mychess[L3] > 1 and yourchess[L3] == 0 and yourchess[S3] == 0): return (9000, 0) if mychess[S4] > 0: mscore += 2000 if mychess[L3] > 1: mscore += 500 elif mychess[L3] > 0: mscore += 100 if yourchess[L3] > 1: oscore += 2000 elif yourchess[L3] > 0: oscore += 400 if mychess[S3] > 0: mscore += mychess[S3] * 10 if yourchess[S3] > 0: oscore += yourchess[S3] * 10 if mychess[L2] > 0: mscore += mychess[L2] * 4 if yourchess[L2] > 0: oscore += yourchess[L2] * 4 if mychess[S2] > 0: mscore += mychess[S2] * 4 if yourchess[S2] > 0: oscore += yourchess[S2] * 4 return (mscore, oscore) # 自我辅助效果,counter对面效果
5)编写evaluate()函数,功能是对上面的得分进行进一步的处理,参数turn表示最后一步棋是谁下的,根据turn的值决定的me(表示自己棋的值)和you(表示对手棋的值,下一步有对手下),在对棋型评分时会用到。checkWin用来判断是否有一方获胜。
def evaluate(self, board, turn, checkWin=False): self.get_init() if turn == MAP_ENUM.player1: me = 1 you = 2 else: me = 2 you = 1 for y in range(self.len): for x in range(self.len): if board[y][x] == me: self.evaluatePoint(board, x, y, me, you) elif board[y][x] == you: self.evaluatePoint(board, x, y, you, me) mychess = self.count[me - 1] yourchess = self.count[you - 1] if checkWin: return mychess[FIVE] > 0 # 检查是否已经胜利 else: mscore, oscore = self.getScore(mychess, yourchess) return (mscore - oscore) # 自我辅助效果,counter对面效果
6)编写函数evaluatePoint(),功能是对某一个位置的4个方向分别进行检查。
def evaluatePoint(self, board, x, y, me, you): direction = [(1, 0), (0, 1), (1, 1), (1, -1)] # 四个方向 for i in range(4): if self.record[y][x][i] == 0: # 检查当前方向棋型 self.getBasicSituation(board, x, y, i, direction[i], me, you, self.count[me - 1]) else: self.save_count += 1
7)编写getLine()函数,功能是把当前方向的棋型存储下来,方便后续的使用。改函数能够根据棋子的位置和方向,获取上面说的长度为9的线。如果线上的位置超出了棋盘的范围,就将这个位置设置为对手的值,因为超出范围和被对手的棋当着,对棋型判断的结果是相同的。
def getLine(self, board, x, y, direction, me, you): line = [0 for i in range(9)] # “光标”移到最左端 tmp_x = x + (-5 * direction[0]) tmp_y = y + (-5 * direction[1]) for i in range(9): tmp_x += direction[0] tmp_y += direction[1] if (tmp_x = self.len or tmp_y = self.len): line[i] = you # 出界 else: line[i] = board[tmp_y][tmp_x] return line
8)编写函数getBasicSituation(),功能是把当前方向的棋型识别成具体的情况,例如把MMMMX识别成活四冲四,活三眠三等。
def getBasicSituation(self, board, x, y, dir_index, dir, me, you, count): # record赋值 def setRecord(self, x, y, left, right, dir_index, direction): tmp_x = x + (-5 + left) * direction[0] tmp_y = y + (-5 + left) * direction[1] for i in range(left, right): tmp_x += direction[0] tmp_y += direction[1] self.record[tmp_y][tmp_x][dir_index] = 1 empty = MAP_ENUM.be_empty.value left_index, right_index = 4, 4 line = self.getLine(board, x, y, dir, me, you) while right_index 0: if line[left_index - 1] != me: break left_index -= 1 left_range, right_range = left_index, right_index while right_range 0: if line[left_range - 1] == you: break left_range -= 1 chess_range = right_range - left_range + 1 if chess_range 5: # XMMMXX, XXMMMX count[L3] += 1 else: # PXMMMXP count[S3] += 1 elif left_empty or right_empty: # PMMMX, XMMMP count[S3] += 1 # 活二眠二 if m_range == 2: left_empty = right_empty = False left_three = right_three = False if line[left_index - 1] == empty: if line[left_index - 2] == me: setRecord(self, x, y, left_index - 2, left_index - 1, dir_index, dir) if line[left_index - 3] == empty: if line[right_index + 1] == empty: # XMXMMX count[L3] += 1 else: # XMXMMP count[S3] += 1 left_three = True elif line[left_index - 3] == you: # PMXMMX if line[right_index + 1] == empty: count[S3] += 1 left_three = True left_empty = True if line[right_index + 1] == empty: if line[right_index + 2] == me: if line[right_index + 3] == me: # MMXMM setRecord(self, x, y, right_index + 1, right_index + 2, dir_index, dir) count[S4] += 1 right_three = True elif line[right_index + 3] == empty: # setRecord(self, x, y, right_index+1, right_index+2, dir_index, dir) if left_empty: # XMMXMX count[L3] += 1 else: # PMMXMX count[S3] += 1 right_three = True elif left_empty: # XMMXMP count[S3] += 1 right_three = True right_empty = True if left_three or right_three: pass elif left_empty and right_empty: # XMMX count[L2] += 1 elif left_empty or right_empty: # PMMX, XMMP count[S2] += 1 # 特殊活二眠二(有空格 if m_range == 1: left_empty = right_empty = False if line[left_index - 1] == empty: if line[left_index - 2] == me: if line[left_index - 3] == empty: if line[right_index + 1] == you: # XMXMP count[S2] += 1 left_empty = True if line[right_index + 1] == empty: if line[right_index + 2] == me: if line[right_index + 3] == empty: if left_empty: # XMXMX count[L2] += 1 else: # PMXMX count[S2] += 1 elif line[right_index + 2] == empty: if line[right_index + 3] == me and line[right_index + 4] == empty: # XMXXMX count[L2] += 1 # 以上都不是则为none棋型 return SITUATION.NONE
2.10实现按钮功能
该游戏的界面上会有四个按钮:
Pick White:选择白棋
Pick Black:选择黑棋
Surrender:投降
Multiple:多人对战
1)编写游戏的按钮类button,这是一个父类,通过函数draw()根据按钮的enablel状态填色。
class Button: def __init__(self, screen, text, x, y, color, enable): # 构造函数 self.screen = screen self.width = button_w self.height = button_h self.button_color = color self.text_color = (255, 255, 255) # 纯白 self.enable = enable self.font = pygame.font.SysFont(None, button_h * 2 // 3) self.rect = pygame.Rect(0, 0, self.width, self.height) self.rect.topleft = (x, y) self.text = text self.init_msg() # 重写pygame内置函数,初始化我们的按钮 def init_msg(self): if self.enable: self.msg_image = self.font.render(self.text, True, self.text_color, self.button_color[0]) else: self.msg_image = self.font.render(self.text, True, self.text_color, self.button_color[1]) self.msg_image_rect = self.msg_image.get_rect() self.msg_image_rect.center = self.rect.center # 根据按钮enable状态填色,具体颜色在后续子类控制 def draw(self): if self.enable: self.screen.fill(self.button_color[0], self.rect) else: self.screen.fill(self.button_color[1], self.rect) self.screen.blit(self.msg_image, self.msg_image_rect)
2)编写类WhiteStartButton,实现选择白棋的功能。
class WhiteStartButton(Button): # 开始按钮(选白棋) def __init__(self, screen, text, x, y): # 构造函数 super().__init__(screen, text, x, y, [(26, 173, 25), (158, 217, 157)], True) def click(self, game): # 点击,pygame内置方法 if self.enable: # 启动游戏并初始化,变换按钮颜色 game.start() game.winner = None game.multiple = False self.msg_image = self.font.render(self.text, True, self.text_color, self.button_color[1]) self.enable = False return True return False def unclick(self): # 取消点击 if not self.enable: self.msg_image = self.font.render(self.text, True, self.text_color, self.button_color[0]) self.enable = True
3)编写类BlackStartButton,实现选择黑棋的功能。
class BlackStartButton(Button): # 开始按钮(选黑棋) def __init__(self, screen, text, x, y): # 构造函数 super().__init__(screen, text, x, y, [(26, 173, 25), (158, 217, 157)], True) def click(self, game): # 点击,pygame内置方法 if self.enable: # 启动游戏并初始化,变换按钮颜色,安排AI先手 game.start() game.winner = None game.multiple = False game.useAI = True self.msg_image = self.font.render(self.text, True, self.text_color, self.button_color[1]) self.enable = False return True return False def unclick(self): # 取消点击 if not self.enable: self.msg_image = self.font.render(self.text, True, self.text_color, self.button_color[0]) self.enable = True
4)编写类GiveupButton,实现投降功能。
class GiveupButton(Button): # 投降按钮(任何模式都能用 def __init__(self, screen, text, x, y): super().__init__(screen, text, x, y, [(230, 67, 64), (236, 139, 137)], False) def click(self, game): # 结束游戏,判断赢家 if self.enable: game.is_play = False if game.winner is None: game.winner = game.map.intoNextTurn(game.player) self.msg_image = self.font.render(self.text, True, self.text_color, self.button_color[1]) self.enable = False return True return False def unclick(self): # 保持不变,填充颜色 if not self.enable: self.msg_image = self.font.render(self.text, True, self.text_color, self.button_color[0]) self.enable = True
5)编写类MultiStartButton,实现多人对战功能。
class MultiStartButton(Button): # 开始按钮(多人游戏) def __init__(self, screen, text, x, y): # 构造函数 super().__init__(screen, text, x, y, [(153, 51, 250), (221, 160, 221)], True) # 紫色 def click(self, game): # 点击,pygame内置方法 if self.enable: # 启动游戏并初始化,变换按钮颜色 game.start() game.winner = None game.multiple=True self.msg_image = self.font.render(self.text, True, self.text_color, self.button_color[1]) self.enable = False return True return False def unclick(self): # 取消点击 if not self.enable: self.msg_image = self.font.render(self.text, True, self.text_color, self.button_color[0]) self.enable = True
2.11实现重写功能(即游戏的调用函数)
为了更好地在主函数中规划和控住整个游戏的代码,编写Game类,在Game类中调用上面的功能函数,然后分别绘制棋盘、按钮和判断获胜的一方。
1)通过__init__(self, caption)实现初始化处理,设置按钮的内容和可用性。
class Game: # pygame类,以下所有功能都是根据需要重写 def __init__(self, caption): # 使用pygame之前必须初始化 pygame.init() self.screen = pygame.display.set_mode([screen_w, screen_h]) # 设置主屏窗口 pygame.display.set_caption(caption) #设置窗口标题,即游戏名称 self.clock = pygame.time.Clock() self.buttons = [] self.buttons.append(WhiteStartButton(self.screen, 'Pick White', 10, map_h)) self.buttons.append(BlackStartButton(self.screen, 'Pick Black', 170, map_h)) self.buttons.append(GiveupButton(self.screen, 'Surrender', 330, map_h)) self.buttons.append(MultiStartButton(self.screen, 'Multiple', 490, map_h)) self.is_play = False self.map = Map(web_broad, web_broad) self.player = MAP_ENUM.player1 self.action = None self.AI = MyChessAI(web_broad) self.useAI = False self.winner = None self.multiple = False
2)定义函数start(self),功能为开始游戏,默认白棋先下。
def start(self): self.is_play = True self.player = MAP_ENUM.player1 # 白棋先手 self.map.get_init()
3)定义函数play(self),绘制出棋盘和按钮。
def play(self): # 画底板 self.clock.tick(60) wood_color = (210, 180, 140) pygame.draw.rect(self.screen, wood_color, pygame.Rect(0, 0, map_w, screen_h)) pygame.draw.rect(self.screen, (255, 255, 255), pygame.Rect(map_w, 0, info_w, screen_h)) # 画按钮 for button in self.buttons: button.draw() if self.is_play and not self.isOver(): if self.useAI and not self.multiple: x, y = self.AI.findBestChess(self.map.map, self.player) self.checkClick(x, y, True) self.useAI = False if self.action is not None: self.checkClick(self.action[0], self.action[1]) self.action = None if not self.isOver(): self.changeMouseShow() if self.isOver(): self.showWinner() # self.buttons[0].enable = True # self.buttons[1].enable = True # self.buttons[2].enable = False self.map.drawBoard(self.screen) self.map.printChessPiece(self.screen)
4)定义函数changeMouseShow(self),在开始游戏的时候吧鼠标指针切换成棋子的形态。
def changeMouseShow(self): # 开始游戏的时候把鼠标预览切换成预览棋子的样子 map_x, map_y = pygame.mouse.get_pos() x, y = self.map.getIndex(map_x, map_y) if self.map.isInside(map_x, map_y) and self.map.isEmpty(x, y): # 在棋盘内且当前无棋子 pygame.mouse.set_visible(False) smoke_blue = (176, 224, 230) pos, radius = (map_x, map_y), chess_size pygame.draw.circle(self.screen, smoke_blue, pos, radius) else: pygame.mouse.set_visible(True) def checkClick(self, x, y, isAI=False): # 后续处理 self.map.click(x, y, self.player) if self.AI.isWin(self.map.map, self.player): self.winner = self.player self.click_button(self.buttons[2]) else: self.player = self.map.intoNextTurn(self.player) if not isAI: self.useAI = True
5)定义函数mouseClick(self, map_x, map_y),处理下棋动作,将某个棋子放到棋盘中的某个位置。
def mouseClick(self, map_x, map_y): # 处理下棋动作 if self.is_play and self.map.isInside(map_x, map_y) and not self.isOver(): x, y = self.map.getIndex(map_x, map_y) if self.map.isEmpty(x, y): self.action = (x, y)
6)定义函数isOver(self),如果一方获胜则中断游戏。
def isOver(self): # 中断条件 return self.winner is not None
7)定义函数showWinner(self),功能是打印输出获胜者。
def showWinner(self): # 输出胜者 def showFont(screen, text, location_x, locaiton_y, height): font = pygame.font.SysFont(None, height) font_image = font.render(text, True, (255, 215, 0), (255, 255, 255)) # 金黄色 font_image_rect = font_image.get_rect() font_image_rect.x = location_x font_image_rect.y = locaiton_y screen.blit(font_image, font_image_rect) if self.winner == MAP_ENUM.player1: str = 'White Wins!' else: str = 'Black Wins!' showFont(self.screen, str, map_w / 5, screen_h / 8, 100) # 居上中,字号100 pygame.mouse.set_visible(True)
8)游戏开始入口
if __name__ == '__main__': game = Game(version) while True: game.play() # 更新屏幕内容 pygame.display.update() # 循环获取事件,监听事件状态 for event in pygame.event.get(): # 判断用户是否点了"X"关闭按钮,并执行if代码段 if event.type == pygame.QUIT: # 卸载所有模块 pygame.quit() # 终止程序,确保退出程序 sys.exit() elif event.type == pygame.MOUSEBUTTONDOWN: mouse_x, mouse_y = pygame.mouse.get_pos() game.mouseClick(mouse_x, mouse_y) game.check_buttons(mouse_x, mouse_y)
3.完整代码及运行结果图
完整代码如下:
import timefrom enum import IntEnumimport pygameimport syst = time.localtime()date = str(t.tm_year) + '-' + str(t.tm_mon) + '-' + str(t.tm_mday) + ' ' + str(t.tm_hour) + ':' + str(t.tm_min) + ':' + str(t.tm_sec)version = 'FiveChessV1.0 作者:栩珩 time:' + date# 基础参数设置square_size = 40 # 单格的宽度(不是格数!是为了方便绘制棋盘用的变量chess_size = square_size // 2 - 2 # 棋子大小web_broad = 15 # 棋盘格数+1(nxn)map_w = web_broad * square_size # 棋盘长度map_h = web_broad * square_size # 棋盘高度info_w = 60 # 按钮界面宽度button_w = 120 # 按钮长宽button_h = 45screen_w = map_w # 总窗口长宽screen_h = map_h + info_w# 地图绘制模块class MAP_ENUM(IntEnum): # 用数字表示当前格的情况 be_empty = 0, # 无人下 player1 = 1, # 玩家一,执白 player2 = 2, # 玩家二,执黑 out_of_range = 3, # 出界class Map: # 地图类 def __init__(self, width, height): # 构造函数 self.width = width self.height = height self.map = [[0 for x in range(self.width)] for y in range(self.height)] # 存储棋盘的二维数组 self.steps = [] # 记录步骤先后 def get_init(self): # 重置棋盘 for y in range(self.height): for x in range(self.width): self.map[y][x] = 0 self.steps = [] def intoNextTurn(self, turn): # 进入下一回合,交换下棋人 if turn == MAP_ENUM.player1: return MAP_ENUM.player2 else: return MAP_ENUM.player1 def getLocate(self, x, y): # 输入下标,返回具体位置 map_x = x * square_size map_y = y * square_size return (map_x, map_y, square_size, square_size) # 返回位置信息 def getIndex(self, map_x, map_y): # 输入具体位置,返回下标 x = map_x // square_size y = map_y // square_size return (x, y) def isInside(self, map_x, map_y): # 是否在有效范围内 if (map_x = map_w or map_y = map_h): return False return True def isEmpty(self, x, y): # 当前格子是否已经有棋子 return (self.map[y][x] == 0) def click(self, x, y, type): # 点击的下棋动作 self.map[y][x] = type.value # 下棋 self.steps.append((x, y)) # 记录步骤信息 def printChessPiece(self, screen): # 绘制棋子 player_one = (255, 245, 238) # 象牙白 player_two = (41, 36, 33) # 烟灰 player_color = [player_one, player_two] for i in range(len(self.steps)): x, y = self.steps[i] map_x, map_y, width, height = self.getLocate(x, y) pos, radius = (map_x + width // 2, map_y + height // 2), chess_size turn = self.map[y][x] pygame.draw.circle(screen, player_color[turn - 1], pos, radius) # 画棋子 def drawBoard(self, screen): # 画棋盘 color = (0, 0, 0) # 线色 for y in range(self.height): # 画横着的棋盘线 start_pos, end_pos = (square_size // 2, square_size // 2 + square_size * y), ( map_w - square_size // 2, square_size // 2 + square_size * y) pygame.draw.line(screen, color, start_pos, end_pos, 1) for x in range(self.width): # 画竖着的棋盘线 start_pos, end_pos = (square_size // 2 + square_size * x, square_size // 2), ( square_size // 2 + square_size * x, map_h - square_size // 2) pygame.draw.line(screen, color, start_pos, end_pos, 1)# 高级AI模块class SITUATION(IntEnum): # 棋型 NONE = 0, # 无 SLEEP_TWO = 1, # 眠二 LIVE_TWO = 2, # 活二 SLEEP_THREE = 3, # 眠三 LIVE_THREE = 4, # 活三 CHONG_FOUR = 5, # 冲四 LIVE_FOUR = 6, # 活四 LIVE_FIVE = 7, # 活五SITUATION_NUM = 8 # 长度# 方便后续调用枚举内容FIVE = SITUATION.LIVE_FIVE.valueL4, L3, L2 = SITUATION.LIVE_FOUR.value, SITUATION.LIVE_THREE.value, SITUATION.LIVE_TWO.valueS4, S3, S2 = SITUATION.CHONG_FOUR.value, SITUATION.SLEEP_THREE.value, SITUATION.SLEEP_TWO.valueclass MyChessAI(): def __init__(self, chess_len): # 构造函数 self.len = chess_len # 当前棋盘大小 # 二维数组,每一格存的是:横评分,纵评分,左斜评分,右斜评分 self.record = [[[0, 0, 0, 0] for i in range(chess_len)] for j in range(chess_len)] # 存储当前格具体棋型数量 self.count = [[0 for i in range(SITUATION_NUM)] for j in range(2)] # 位置分(同条件下越靠近棋盘中央越高) self.position_isgreat = [ [(web_broad - max(abs(i - web_broad / 2 + 1), abs(j - web_broad / 2 + 1))) for i in range(chess_len)] for j in range(chess_len)] def get_init(self): # 初始化 for i in range(self.len): for j in range(self.len): for k in range(4): self.record[i][j][k] = 0 for i in range(len(self.count)): for j in range(len(self.count[0])): self.count[i][j] = 0 self.save_count = 0 def isWin(self, board, turn): # 当前人胜利 return self.evaluate(board, turn, True) # 返回所有未下棋坐标(位置从好到坏) def genmove(self, board, turn): moves = [] for y in range(self.len): for x in range(self.len): if board[y][x] == 0: score = self.position_isgreat[y][x] moves.append((score, x, y)) moves.sort(reverse=True) return moves # 返回当前最优解下标 def search(self, board, turn): moves = self.genmove(board, turn) bestmove = None max_score = -99999 # 无穷小 for score, x, y in moves: board[y][x] = turn.value score = self.evaluate(board, turn) board[y][x] = 0 if score > max_score: max_score = score bestmove = (max_score, x, y) return bestmove # 主要用于测试的函数,现在已经没什么用 def findBestChess(self, board, turn): # time1 = time.time() score, x, y = self.search(board, turn) # time2 = time.time() # print('time:%f (%d, %d)' % ((time2 - time1), x, y)) return (x, y) # 得出一点的评分 # 直接列举所有棋型 def getScore(self, mychess, yourchess): mscore, oscore = 0, 0 if mychess[FIVE] > 0: return (10000, 0) if yourchess[FIVE] > 0: return (0, 10000) if mychess[S4] >= 2: mychess[L4] += 1 if yourchess[L4] > 0: return (0, 9050) if yourchess[S4] > 0: return (0, 9040) if mychess[L4] > 0: return (9030, 0) if mychess[S4] > 0 and mychess[L3] > 0: return (9020, 0) if yourchess[L3] > 0 and mychess[S4] == 0: return (0, 9010) if (mychess[L3] > 1 and yourchess[L3] == 0 and yourchess[S3] == 0): return (9000, 0) if mychess[S4] > 0: mscore += 2000 if mychess[L3] > 1: mscore += 500 elif mychess[L3] > 0: mscore += 100 if yourchess[L3] > 1: oscore += 2000 elif yourchess[L3] > 0: oscore += 400 if mychess[S3] > 0: mscore += mychess[S3] * 10 if yourchess[S3] > 0: oscore += yourchess[S3] * 10 if mychess[L2] > 0: mscore += mychess[L2] * 4 if yourchess[L2] > 0: oscore += yourchess[L2] * 4 if mychess[S2] > 0: mscore += mychess[S2] * 4 if yourchess[S2] > 0: oscore += yourchess[S2] * 4 return (mscore, oscore) # 自我辅助效果,counter对面效果 # 对上述得分进行进一步处理 def evaluate(self, board, turn, checkWin=False): self.get_init() if turn == MAP_ENUM.player1: me = 1 you = 2 else: me = 2 you = 1 for y in range(self.len): for x in range(self.len): if board[y][x] == me: self.evaluatePoint(board, x, y, me, you) elif board[y][x] == you: self.evaluatePoint(board, x, y, you, me) mychess = self.count[me - 1] yourchess = self.count[you - 1] if checkWin: return mychess[FIVE] > 0 # 检查是否已经胜利 else: mscore, oscore = self.getScore(mychess, yourchess) return (mscore - oscore) # 自我辅助效果,counter对面效果 def evaluatePoint(self, board, x, y, me, you): direction = [(1, 0), (0, 1), (1, 1), (1, -1)] # 四个方向 for i in range(4): if self.record[y][x][i] == 0: # 检查当前方向棋型 self.getBasicSituation(board, x, y, i, direction[i], me, you, self.count[me - 1]) else: self.save_count += 1 # 把当前方向棋型存储下来,方便后续使用 def getLine(self, board, x, y, direction, me, you): line = [0 for i in range(9)] # “光标”移到最左端 tmp_x = x + (-5 * direction[0]) tmp_y = y + (-5 * direction[1]) for i in range(9): tmp_x += direction[0] tmp_y += direction[1] if (tmp_x = self.len or tmp_y = self.len): line[i] = you # 出界 else: line[i] = board[tmp_y][tmp_x] return line # 把当前方向的棋型识别成具体情况(如把MMMMX识别成冲四) def getBasicSituation(self, board, x, y, dir_index, dir, me, you, count): # record赋值 def setRecord(self, x, y, left, right, dir_index, direction): tmp_x = x + (-5 + left) * direction[0] tmp_y = y + (-5 + left) * direction[1] for i in range(left, right): tmp_x += direction[0] tmp_y += direction[1] self.record[tmp_y][tmp_x][dir_index] = 1 empty = MAP_ENUM.be_empty.value left_index, right_index = 4, 4 line = self.getLine(board, x, y, dir, me, you) while right_index 0: if line[left_index - 1] != me: break left_index -= 1 left_range, right_range = left_index, right_index while right_range 0: if line[left_range - 1] == you: break left_range -= 1 chess_range = right_range - left_range + 1 if chess_range 5: # XMMMXX, XXMMMX count[L3] += 1 else: # PXMMMXP count[S3] += 1 elif left_empty or right_empty: # PMMMX, XMMMP count[S3] += 1 # 活二眠二 if m_range == 2: left_empty = right_empty = False left_three = right_three = False if line[left_index - 1] == empty: if line[left_index - 2] == me: setRecord(self, x, y, left_index - 2, left_index - 1, dir_index, dir) if line[left_index - 3] == empty: if line[right_index + 1] == empty: # XMXMMX count[L3] += 1 else: # XMXMMP count[S3] += 1 left_three = True elif line[left_index - 3] == you: # PMXMMX if line[right_index + 1] == empty: count[S3] += 1 left_three = True left_empty = True if line[right_index + 1] == empty: if line[right_index + 2] == me: if line[right_index + 3] == me: # MMXMM setRecord(self, x, y, right_index + 1, right_index + 2, dir_index, dir) count[S4] += 1 right_three = True elif line[right_index + 3] == empty: # setRecord(self, x, y, right_index+1, right_index+2, dir_index, dir) if left_empty: # XMMXMX count[L3] += 1 else: # PMMXMX count[S3] += 1 right_three = True elif left_empty: # XMMXMP count[S3] += 1 right_three = True right_empty = True if left_three or right_three: pass elif left_empty and right_empty: # XMMX count[L2] += 1 elif left_empty or right_empty: # PMMX, XMMP count[S2] += 1 # 特殊活二眠二(有空格 if m_range == 1: left_empty = right_empty = False if line[left_index - 1] == empty: if line[left_index - 2] == me: if line[left_index - 3] == empty: if line[right_index + 1] == you: # XMXMP count[S2] += 1 left_empty = True if line[right_index + 1] == empty: if line[right_index + 2] == me: if line[right_index + 3] == empty: if left_empty: # XMXMX count[L2] += 1 else: # PMXMX count[S2] += 1 elif line[right_index + 2] == empty: if line[right_index + 3] == me and line[right_index + 4] == empty: # XMXXMX count[L2] += 1 # 以上都不是则为none棋型 return SITUATION.NONE# 主程序实现部分# 控制进程按钮类(父类)class Button: def __init__(self, screen, text, x, y, color, enable): # 构造函数 self.screen = screen self.width = button_w self.height = button_h self.button_color = color self.text_color = (255, 255, 255) # 纯白 self.enable = enable self.font = pygame.font.SysFont(None, button_h * 2 // 3) self.rect = pygame.Rect(0, 0, self.width, self.height) self.rect.topleft = (x, y) self.text = text self.init_msg() # 重写pygame内置函数,初始化我们的按钮 def init_msg(self): if self.enable: self.msg_image = self.font.render(self.text, True, self.text_color, self.button_color[0]) else: self.msg_image = self.font.render(self.text, True, self.text_color, self.button_color[1]) self.msg_image_rect = self.msg_image.get_rect() self.msg_image_rect.center = self.rect.center # 根据按钮enable状态填色,具体颜色在后续子类控制 def draw(self): if self.enable: self.screen.fill(self.button_color[0], self.rect) else: self.screen.fill(self.button_color[1], self.rect) self.screen.blit(self.msg_image, self.msg_image_rect)class WhiteStartButton(Button): # 开始按钮(选白棋) def __init__(self, screen, text, x, y): # 构造函数 super().__init__(screen, text, x, y, [(26, 173, 25), (158, 217, 157)], True) def click(self, game): # 点击,pygame内置方法 if self.enable: # 启动游戏并初始化,变换按钮颜色 game.start() game.winner = None game.multiple = False self.msg_image = self.font.render(self.text, True, self.text_color, self.button_color[1]) self.enable = False return True return False def unclick(self): # 取消点击 if not self.enable: self.msg_image = self.font.render(self.text, True, self.text_color, self.button_color[0]) self.enable = Trueclass BlackStartButton(Button): # 开始按钮(选黑棋) def __init__(self, screen, text, x, y): # 构造函数 super().__init__(screen, text, x, y, [(26, 173, 25), (158, 217, 157)], True) def click(self, game): # 点击,pygame内置方法 if self.enable: # 启动游戏并初始化,变换按钮颜色,安排AI先手 game.start() game.winner = None game.multiple = False game.useAI = True self.msg_image = self.font.render(self.text, True, self.text_color, self.button_color[1]) self.enable = False return True return False def unclick(self): # 取消点击 if not self.enable: self.msg_image = self.font.render(self.text, True, self.text_color, self.button_color[0]) self.enable = Trueclass GiveupButton(Button): # 投降按钮(任何模式都能用 def __init__(self, screen, text, x, y): super().__init__(screen, text, x, y, [(230, 67, 64), (236, 139, 137)], False) def click(self, game): # 结束游戏,判断赢家 if self.enable: game.is_play = False if game.winner is None: game.winner = game.map.intoNextTurn(game.player) self.msg_image = self.font.render(self.text, True, self.text_color, self.button_color[1]) self.enable = False return True return False def unclick(self): # 保持不变,填充颜色 if not self.enable: self.msg_image = self.font.render(self.text, True, self.text_color, self.button_color[0]) self.enable = Trueclass MultiStartButton(Button): # 开始按钮(多人游戏) def __init__(self, screen, text, x, y): # 构造函数 super().__init__(screen, text, x, y, [(153, 51, 250), (221, 160, 221)], True) # 紫色 def click(self, game): # 点击,pygame内置方法 if self.enable: # 启动游戏并初始化,变换按钮颜色 game.start() game.winner = None game.multiple=True self.msg_image = self.font.render(self.text, True, self.text_color, self.button_color[1]) self.enable = False return True return False def unclick(self): # 取消点击 if not self.enable: self.msg_image = self.font.render(self.text, True, self.text_color, self.button_color[0]) self.enable = Trueclass Game: # pygame类,以下所有功能都是根据需要重写 def __init__(self, caption): # 使用pygame之前必须初始化 pygame.init() self.screen = pygame.display.set_mode([screen_w, screen_h]) # 设置主屏窗口 pygame.display.set_caption(caption) #设置窗口标题,即游戏名称 self.clock = pygame.time.Clock() self.buttons = [] self.buttons.append(WhiteStartButton(self.screen, 'Pick White', 10, map_h)) self.buttons.append(BlackStartButton(self.screen, 'Pick Black', 170, map_h)) self.buttons.append(GiveupButton(self.screen, 'Surrender', 330, map_h)) self.buttons.append(MultiStartButton(self.screen, 'Multiple', 490, map_h)) self.is_play = False self.map = Map(web_broad, web_broad) self.player = MAP_ENUM.player1 self.action = None self.AI = MyChessAI(web_broad) self.useAI = False self.winner = None self.multiple = False def start(self): self.is_play = True self.player = MAP_ENUM.player1 # 白棋先手 self.map.get_init() def play(self): # 画底板 self.clock.tick(60) wood_color = (210, 180, 140) pygame.draw.rect(self.screen, wood_color, pygame.Rect(0, 0, map_w, screen_h)) pygame.draw.rect(self.screen, (255, 255, 255), pygame.Rect(map_w, 0, info_w, screen_h)) # 画按钮 for button in self.buttons: button.draw() if self.is_play and not self.isOver(): if self.useAI and not self.multiple: x, y = self.AI.findBestChess(self.map.map, self.player) self.checkClick(x, y, True) self.useAI = False if self.action is not None: self.checkClick(self.action[0], self.action[1]) self.action = None if not self.isOver(): self.changeMouseShow() if self.isOver(): self.showWinner() # self.buttons[0].enable = True # self.buttons[1].enable = True # self.buttons[2].enable = False self.map.drawBoard(self.screen) self.map.printChessPiece(self.screen) def changeMouseShow(self): # 开始游戏的时候把鼠标预览切换成预览棋子的样子 map_x, map_y = pygame.mouse.get_pos() x, y = self.map.getIndex(map_x, map_y) if self.map.isInside(map_x, map_y) and self.map.isEmpty(x, y): # 在棋盘内且当前无棋子 pygame.mouse.set_visible(False) smoke_blue = (176, 224, 230) pos, radius = (map_x, map_y), chess_size pygame.draw.circle(self.screen, smoke_blue, pos, radius) else: pygame.mouse.set_visible(True) def checkClick(self, x, y, isAI=False): # 后续处理 self.map.click(x, y, self.player) if self.AI.isWin(self.map.map, self.player): self.winner = self.player self.click_button(self.buttons[2]) else: self.player = self.map.intoNextTurn(self.player) if not isAI: self.useAI = True def mouseClick(self, map_x, map_y): # 处理下棋动作 if self.is_play and self.map.isInside(map_x, map_y) and not self.isOver(): x, y = self.map.getIndex(map_x, map_y) if self.map.isEmpty(x, y): self.action = (x, y) def isOver(self): # 中断条件 return self.winner is not None def showWinner(self): # 输出胜者 def showFont(screen, text, location_x, locaiton_y, height): font = pygame.font.SysFont(None, height) font_image = font.render(text, True, (255, 215, 0), (255, 255, 255)) # 金黄色 font_image_rect = font_image.get_rect() font_image_rect.x = location_x font_image_rect.y = locaiton_y screen.blit(font_image, font_image_rect) if self.winner == MAP_ENUM.player1: str = 'White Wins!' else: str = 'Black Wins!' showFont(self.screen, str, map_w / 5, screen_h / 8, 100) # 居上中,字号100 pygame.mouse.set_visible(True) def click_button(self, button): if button.click(self): for tmp in self.buttons: if tmp != button: tmp.unclick() def check_buttons(self, mouse_x, mouse_y): for button in self.buttons: if button.rect.collidepoint(mouse_x, mouse_y): self.click_button(button) break# 以下为pygame1.9帮助文档的示例代码if __name__ == '__main__': game = Game(version) while True: game.play() # 更新屏幕内容 pygame.display.update() # 循环获取事件,监听事件状态 for event in pygame.event.get(): # 判断用户是否点了"X"关闭按钮,并执行if代码段 if event.type == pygame.QUIT: # 卸载所有模块 pygame.quit() # 终止程序,确保退出程序 sys.exit() elif event.type == pygame.MOUSEBUTTONDOWN: mouse_x, mouse_y = pygame.mouse.get_pos() game.mouseClick(mouse_x, mouse_y) game.check_buttons(mouse_x, mouse_y)
游戏运行结果如图:
4.软件封装
4.1pyinstaller的简介
本实例用pyinstaller来打包py程序,生成可执行程序。pyinstaller是一个跨平台的Python应用打包工具,支持 Windows/Linux/MacOS三大主流平台,能够把 Python 脚本及其所在的 Python 解释器打包成可执行文件,从而允许最终用户在无需安装 Python 的情况下执行应用程序。但是,pyInstaller 制作出来的执行文件并不是跨平台的,如果需要为不同平台打包,就要在相应平台上运行pyInstaller进行打包。
4.2pyinstaller的安装
pip install Pyinstaller
4.3准备
需要准备的内容就是,要打包的py文件,必要时可以加上程序的图像。上面的五子棋.io就是软件的图标,五子棋游戏.py就是要打包的Python文件(建议将程序图标转换成ico格式,因为其他格式如PNG,JPG等可能会报错)。
4.4程序打包
首先打开cmd窗口,
然后把路径切换到当前路径打开命令提示行,(一定要切换到项目目录再执行打包命令),
然后输入打包命令
pyinstaller -F -i 五子棋.ico -w 五子棋游戏.py
输入命令后看见successfully那就是成功了.
具体的pyinstaller使用方法和实例可以参考文章点击这里