darknet框架训练yolov7

  • Yolov7在darknet框架下的训练过程
    • 配置darknet环境
    • 官方数据集下载
    • 模型和配置文件
    • 训练之前必须看
    • 参数修改
    • 模型训练
    • 模型评估

Yolov7在darknet框架下的训练过程

  1. 配置darknet环境

    Darknet环境可以看我之前写的博文,这里就不赘述了。
    上链接:https://blog.csdn.net/qq_49838648/article/details/124820044
    例:

  2. 官方数据集下载

    下载使用官方coco数据进行配置(我使用的是coco2017)

  3. 模型和配置文件

    此处需要把yolov7官方模型中的cfg文件和预训练模型下载
    上链接:https://download.csdn.net/download/qq_49838648/86240219″ />

  4. 参数修改

    根据数据集进行相关参数修改,如果使用上述coco2017数据集,那么数据类别为80类,直接使用cfg进行训练即可。
    如果你没有使用coco数据集,而使用自己的数据进行训练,那么需要修改配置cfg文件:
    修改classes,使用快捷键搜索关键字[yolo]可以搜到3次,修改classes的数量为你的类别数,这里classes=2,
    修改filters,每次搜到的yolo上一个的[convolutional]中filters=(classes + 5)x3
    比如filters=21。

  5. 模型训练

    注意:yolov7-tiny.weights 为训练好的模型测试使用即可
    yolov7-tiny.conv.87 为作者微调模型,训练时候使用这个

     ./darknet detector train    <*.data的绝对路径>    <yolov7-tiny.cfg的绝对路径>   <yolov7-tiny.conv.87 的绝对路径>  -map  -gpus 0,1,2 -map       训练时候查看map曲线 -gpus  0,1,2      多卡训练指定显卡
  6. 模型评估

    ./darknet detector map   <*.data的绝对路径>    <yolov7-tiny.cfg的绝对路径>  <训练完成后产生的yolov7-tiny_best.weights>