文章目录

  • 一、对excel文件的处理
    • 1.读取excel文件并将其内容转化DataFrame和矩阵形式
    • 2.将数据写入xlsx文件
    • 3.将数据保存为xlsx文件
    • 4.使用excel对数据进行处理的缺点
  • 二、对csv文件的处理
    • 1.读取csv文件并将其内容转化为DataFrame形式
    • 2.将DataFrame保存为csv文件
    • 3.优缺点
  • 三、对txt文件的处理
    • 1.读取txt文件
    • 2.将数据写入txt文件
    • 3.将数据保存到txt文件
  • 四、对DataFrame文件的基本操作
    • 1.DataFrame的创建
      • 1.1根据字典创建
      • 1.2读取文件
      • 1.3 DataFrame文件拼接
    • 2.DataFrame轴的概念
    • 3.DataFrame一些性质
      • 3.1索引、切片
      • 3.2修改数据
      • 3.3算数运算
      • 3.4函数应用和映射
      • 3.5排序和排名
      • 3.6汇总和计算描述统计
      • 3.7处理缺失数据
      • 3.8 其他
  • Dataframe中的Series是什么?
  • 其他文件的操作
    • 文件复制操作
    • 如果路径不存在创建路径
    • 查看当前目录下内容

一、对excel文件的处理

1.读取excel文件并将其内容转化DataFrame和矩阵形式

①将excel转化为dataframe格式

data_file = 'Pre_results.xlsx' # Excel文件存储位置D = pd.read_excel('Pre_results.xlsx')print(D)

②将excel转化为矩阵格式
首先要说明的一点是,同一个矩阵中所有元素必须是同一类型
例如,生成矩阵时,我们可以为矩阵指定类型dtype=str、int、float等。

# 生成一个2×2的类型为str的矩阵import numpy as npdatamatrix = np.zeros((2, 2),dtype = str)print(datamatrix)


可见,在这个矩阵中的元素都是str类型。
代码实战:
首先看一下我们要处理的excel文件的内容。

下面直接上代码。

import numpy as npimport xlrddef import_excel_matrix(path):    table = xlrd.open_workbook(path).sheets()[0] # 获取第一个sheet表    row = table.nrows # 行数    #print(row)    col = table.ncols # 列数    datamatrix = np.zeros((row, col),dtype = float) # 生成一个nrows行*ncols列的初始矩阵,在excel中,类型必须相同,否则需要自己指定dtype来强制转换。    for i in range(col): # 对列进行遍历 向矩阵中放入数据        #print(table.col_values(i)) #是矩阵        cols = np.matrix(table.col_values(i)) # 把list转换为矩阵进行矩阵操作        #print(cols)        #cols = float(cols)        datamatrix[:, i] = cols # 按列把数据存进矩阵中    return datamatrixdata_file = 'to_matrix.xlsx' # Excel文件存储位置data_matrix = import_excel_matrix(data_file)print(data_matrix)

运行结果:

2.将数据写入xlsx文件

# 1.导入openpyxl模块import openpyxl# 2.调用Workbook()方法wb = openpyxl.Workbook()# 3. 新建一个excel文件,并且在单元表为"sheet1"的表中写入数据ws = wb.create_sheet("sheet1")# 4.在单元格中写入数据# ws.cell(row=m, column=n).value = *** 在第m行n列写入***数据ws.cell(row=1, column=1).value = "时间"ws.cell(row=1, column=2).value = "零食"ws.cell(row=1, column=3).value = "是否好吃"# 5.保存表格wb.save('嘿嘿.xlsx')print('保存成功!')

3.将数据保存为xlsx文件

import xlwtworkbook=xlwt.Workbook(encoding='utf-8')booksheet=workbook.add_sheet('Sheet 1', cell_overwrite_ok=True)DATA=(('学号','姓名','年龄','性别','成绩'), ('1001','A','11','男','12'),('1002','B','12','女','22'),('1003','C','13','女','32'),('1004','D','14','男','52'),)for i,row in enumerate(DATA):    for j,col in enumerate(row):        booksheet.write(i,j,col)workbook.save('grade.xls')

4.使用excel对数据进行处理的缺点

只能一行一行的读出和写入,且矩阵形式只可以存放相同类型的数据,效率不高。

二、对csv文件的处理

1.读取csv文件并将其内容转化为DataFrame形式

import pandas as pddf = pd.read_csv('to_df.csv') #,nrows =6) nrows=6表示只读取前六行数据print(df)

2.将DataFrame保存为csv文件

df.to_csv('df_to_csv.csv')

3.优缺点

①CSV是纯文本文件,excel不是纯文本,excel包含很多格式信息在里面。
②CSV文件的体积会更小,创建分发读取更加方便,适合存放结构化信息,比如记录的导出,流量统计等等。
③CSV文件在windows平台默认的打开方式是excel,但是它的本质是一个文本文件。
④csv文件只有一个sheet,太多的表不易保存,注意命名规范。

三、对txt文件的处理

1.读取txt文件

f=open('data.txt')print(f.read())

2.将数据写入txt文件

注意不能将DataFrame写入txt文件,只能写入字符串。

f = open('data.txt','w', encoding='utf-8') #打开文件,若文件不存在系统自动创建#w只能写入操作 r只能读取 a向文件追加;w+可读可写 r+可读可写 a+可读可追加;wb+写入进制数据#w模式打开文件,如果文件中有数据,再次写入内容,会把原来的覆盖掉f.write('hello world! = %.3f' % data) #write写入f.writelines(['hello!\n']) #writelines 将列表中的字符串写入文件 但不会换行 参数必须是一个只存放字符串的列表f.close() #关闭文件

3.将数据保存到txt文件

save_path= 'save.txt'np.savetxt(save_path, data, fmt='%.6f')

四、对DataFrame文件的基本操作

1.DataFrame的创建

①DataFrame是一种表格型数据结构,(每一列的数据类型可以不同,而矩阵必须相同)它含有一组有序的列,每列可以是不同的值。
DataFrame既有行索引,也有列索引,(调用其值时用)它可以看作是由Series组成的字典,不过这些Series公用一个索引。
③DataFrame的创建有多种方式,可以根据dict进行创建,也可以读取csv或者txt文件来创建。这里主要介绍这两种方式。

1.1根据字典创建

data = {    'state':['Ohio','Ohio','Ohio','Nevada','Nevada'],    'year':[2000,2001,2002,2001,2002],    'pop':[1.5,1.7,3.6,2.4,2.9]}frame = pd.DataFrame(data)frame#输出    pop state   year0   1.5 Ohio    20001   1.7 Ohio    20012   3.6 Ohio    20023   2.4 Nevada  20014   2.9 Nevada  2002

DataFrame的行索引是index,列索引是columns,我们可以在创建DataFrame时指定索引的值:

frame2 = pd.DataFrame(data,index=['one','two','three','four','five'],columns=['year','state','pop','debt'])frame2#输出    year    state   pop debtone 2000    Ohio    1.5 NaNtwo 2001    Ohio    1.7 NaNthree   2002    Ohio    3.6 NaNfour    2001    Nevada  2.4 NaNfive    2002    Nevada  2.9 NaN

使用嵌套字典也可以创建DataFrame,此时外层字典的键作为列,内层键则作为索引:

pop = {'Nevada':{2001:2.4,2002:2.9},'Ohio':{2000:1.5,2001:1.7,2002:3.6}}frame3 = pd.DataFrame(pop)frame3#输出    Nevada  Ohio2000    NaN 1.52001    2.4 1.72002    2.9 3.6

我们可以用index,columns,values来访问DataFrame的行索引,列索引以及数据值,数据值返回的是一个二维的ndarray

frame2.valuesframe2.values[0,1]

1.2读取文件

读取文件生成DataFrame最常用的是read_csv,read_table方法。该方法中几个重要的参数如下所示:

其他创建DataFrame的方式有很多,比如我们可以通过读取mysql或者mongoDB来生成,也可以读取json文件等等,这里就不再介绍。

1.3 DataFrame文件拼接

df = df1.append([df2,df3], ignore_index = True)

2.DataFrame轴的概念

在DataFrame的处理中经常会遇到轴的概念,这里先给大家一个直观的印象,我们所说的axis=0即表示沿着每一列或行标签\索引值向下执行方法,axis=1即表示沿着每一行或者列标签模向执行对应的方法。

3.DataFrame一些性质

3.1索引、切片

我们可以根据列名来选取一列,返回一个Series:

frame2['year'] #索引列名

索引多列

data = pd.DataFrame(np.arange(16).reshape((4,4)),index = ['Ohio','Colorado','Utah','New York'],columns=['one','two','three','four'])data[['two','three']]

索引多行

data[:2] #第一行和第二行#输出    one two three   fourOhio    0   1   2   3Colorado    4   5   6   7

索引时,如果要是用标签,最好使用loc方法,如果使用下标,最好使用iloc方法。

data.loc['Colorado',['two','three']]#输出two      5three    6Name: Colorado, dtype: int64data.iloc[0:3,2]#输出Ohio         2Colorado     6Utah        10Name: three, dtype: int64

3.2修改数据

可以使用一个标量修改DataFrame中的某一列,此时这个标量会广播到DataFrame的每一行上。

data = {    'state':['Ohio','Ohio','Ohio','Nevada','Nevada'],    'year':[2000,2001,2002,2001,2002],    'pop':[1.5,1.7,3.6,2.4,2.9]}frame2 = pd.DataFrame(data,index=['one','two','three','four','five'],columns=['year','state','pop','debt'])frame2frame2['debt']=16.5

也可以使用一个列表来修改,不过要保证列表的长度与DataFrame长度相同:

frame2.debt = np.arange(5)

可以使用一个Series,此时会根据索引进行精确匹配:

val = pd.Series([-1.2,-1.5,-1.7],index=['two','four','five'])frame2['debt'] = val

3.3算数运算

DataFrame在进行算术运算时会进行补齐,在不重叠的部分补足NA

df1 = pd.DataFrame(np.arange(9).reshape((3,3)),columns=list('bcd'),index=['Ohio','Texas','Colorado'])df2 = pd.DataFrame(np.arange(12).reshape((4,3)),columns = list('bde'),index=['Utah','Ohio','Texas','Oregon'])df1 + df2

3.4函数应用和映射

numpy的元素级数组方法,也可以用于操作Pandas对象:

frame = pd.DataFrame(np.random.randn(3,3),columns=list('bcd'),index=['Ohio','Texas','Colorado'])np.abs(frame)

另一个常见的操作是,将函数应用到由各列或行所形成的一维数组上。DataFrame的apply方法即可实现此功能。

f = lambda x:x.max() - x.min()frame.apply(f)

3.5排序和排名

对于DataFrame,sort_index可以根据任意轴的索引进行排序,并指定升序降序

frame = pd.DataFrame(np.arange(8).reshape((2,4)),index=['three','one'],columns=['d','a','b','c'])frame.sort_index()

DataFrame也可以按照值进行排序:

#按照任意一列或多列进行排序frame.sort_values(by=['a','b'])

3.6汇总和计算描述统计

DataFrame中的实现了sum、mean、max等方法,我们可以指定进行汇总统计的轴,同时,也可以使用describe函数查看基本所有的统计项:

df = pd.DataFrame([[1.4,np.nan],[7.1,-4.5],[np.nan,np.nan],[0.75,-1.3]],index=['a','b','c','d'],columns=['one','two'])df.sum(axis=1)#输出one    9.25two   -5.80dtype: float64#Na会被自动排除,可以使用skipna选项来禁用该功能df.mean(axis=1,skipna=False)#输出a      NaNb    1.300c      NaNd   -0.275dtype: float64#idxmax返回间接统计,是达到最大值的索引df.idxmax()#输出one    btwo    ddtype: object#describe返回的是DataFrame的汇总统计#非数值型的与数值型的统计返回结果不同df.describe()

DataFrame也实现了corr和cov方法来计算一个DataFrame的相关系数矩阵和协方差矩阵,同时DataFrame也可以与Series求解相关系数。

frame1 = pd.DataFrame(np.random.randn(3,3),index=list('abc'),columns=list('abc'))frame1.corrframe1.cov()#corrwith用于计算每一列与Series的相关系数frame1.corrwith(frame1['a'])

3.7处理缺失数据

Pandas中缺失值相关的方法主要有以下三个:
isnull方法用于判断数据是否为空数据;
fillna方法用于填补缺失数据;
dropna方法用于舍弃缺失数据。

上面两个方法返回一个新的Series或者DataFrame,对原数据没有影响,如果想在原数据上进行直接修改,使用inplace参数:

data = pd.DataFrame([[1,6.5,3],[1,np.nan,np.nan],[np.nan,np.nan,np.nan],[np.nan,6.5,3]])data.dropna()#输出    0   1   20   1.0 6.5 3.0

对DataFrame来说,dropna方法如果发现缺失值,就会进行整行删除,不过可以指定删除的方式,how=all,是当整行全是na的时候才进行删除,同时还可以指定删除的轴。

data.dropna(how='all',axis=1,inplace=True)data#输出0   1   20   1.0 6.5 3.01   1.0 NaN NaN2   NaN NaN NaN3   NaN 6.5 3.0

DataFrame填充缺失值可以统一填充,也可以按列填充,或者指定一种填充方式:

data.fillna({1:2,2:3})#输出0   1   20   1.0 6.5 3.01   1.0 2.0 3.02   NaN 2.0 3.03   NaN 6.5 3.0data.fillna(method='ffill')#输出0   1   20   1.0 6.5 3.01   1.0 6.5 3.02   1.0 6.5 3.03   1.0 6.5 3.0

3.8 其他

a = df.groupby(['device_category', 'media_category'])['exposure_last'].mean()

选择这两个特征 ‘device_category’, ‘media_category’相同的行,根据’exposure_last’计算mean平均值(sum求和)。

Dataframe中的Series是什么?

1、series与array类型的不同之处为series有索引,而另一个没有;series中的数据必须是一维的,而array类型不一定
2、可以把series看成一个定长的有序字典,可以通过shape,index,values等得到series的属性

其他文件的操作

文件复制操作

import shutilshutil.copyfile(dir1,dir2)

如果路径不存在创建路径

if not os.path.exists(datapath): os.mkdir(datapath)

查看当前目录下内容

import osall_files = os.listdir(os.getcwd())print(all_files)
filenames = os.listdir(os.curdir)  #获取当前目录中的内容print(filenames)